...
首页> 外文期刊>Journal of Volcanology and Geothermal Research >Modelling the lava dome extruded at Soufriere Hills Volcano, Montserrat, August 2005-May 2006 Part I: Dome shape and internal structure
【24h】

Modelling the lava dome extruded at Soufriere Hills Volcano, Montserrat, August 2005-May 2006 Part I: Dome shape and internal structure

机译:2005年8月至2006年5月,在蒙特塞拉特Soufriere Hills Volcano上挤出的熔岩穹顶建模第一部分:穹顶形状和内部结构

获取原文
获取原文并翻译 | 示例

摘要

Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufriere Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core-talus model simulates many of the observed growth characteristics of the 2005-2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
机译:熔岩圆顶由核心,甲壳和碎裂距骨组成。它们可以通过岩心的膨胀内生和/或在地表剪切剪切叶和鲸背叶的挤出内生。内部结构对于确定熔岩穹顶的生长稳定发展的程度至为重要,或者反之则很容易崩溃。无论是相对还是绝对条件而言,穹顶内存在的岩心熔岩越多,爆炸能量就越大,无论是坍塌后的大火山碎屑流,还是特别是在非常迅速地移除穹顶的侧向支撑后的横向爆炸事件中。了解圆顶内核心熔岩的位置也与危险评估目的有关。在距骨基底上散布的脚趾或岩心熔岩波既可能相对不稳定,又可能在倒退性塌陷的早期阶段加速发展为更剧烈的活动。蒙特塞拉特的Soufriere Hills Volcano火山自1995年以来一直爆发,并产生了许多熔岩穹顶,这些穹顶经历了多次坍塌事件。我们考虑了从2005年8月到2006年5月的一个连续圆顶增长期,该事件导致2006年5月20日发生圆顶塌陷事件。塌方事件持续了3小时,从以前的生长期中去除了整个圆顶加上圆顶残留物,该异常暴力和快速倒塌事件。我们对熔岩穹顶的生长和演化使用轴对称计算有限元方法模型。我们的模型包括基于轴对称内源性穹顶生长的核心,甲壳和距骨组成部分的演化,这使我们能够对距骨和核心之间的界面进行建模。尽管仅明确地对轴对称内源性穹顶的生长进行了建模,但我们的核心距骨模型还是很好地模拟了2005-2006 SHV熔岩穹顶的许多观测到的生长特征。此外,当大量的距骨聚集在圆顶的下侧面附近时,我们的模拟有可能复制大规模的外源特性。模型结果表明,穹顶核心可以覆盖正在增长的穹顶内的距骨,从而可能会产生一个明显的弱点区域,并可能引发塌陷。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号