首页> 外文期刊>Journal of Volcanology and Geothermal Research >On the effect of crustal layering on ring-fault initiation and the formation of collapse calderas
【24h】

On the effect of crustal layering on ring-fault initiation and the formation of collapse calderas

机译:地壳分层对断层起爆和塌陷破火山口形成的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Collapse calderas can be attributed to subsidence of the magma chamber roof along bounding sub-vertical normal faults (ring-faults) after a decompression of the magma chamber. It has previously been shown that for ring-faults to initiate, and thus facilitate collapse, the stress field both at the surface and around the magma chamber must satisfy specific critical conditions. Here, we present new numerical models that use a Finite Element Method to investigate the effects of crustal layering on local stress field distribution. Results are compared with existing criteria for ring-fault initiation. Different subsurface scenarios were simulated by varying the stiffness (Young's modulus) of layers placed above the magma chamber, and the host rock in which the chamber is seated. We consider depressurisation of a magma chamber, so as to simulate magma withdrawal. Results indicate that mechanical layering is a further first-order variable in the rare achievement of stress conditions required for ring-fault formation, and may be influential in facilitating or inhibiting caldera collapse. We show that for a given geometrical set-up, the magnitude and position of maximum tensional stress at the Earth's surface are influenced by the occurrence and relative distribution of mechanically stiff or soft lithologies above the magma chamber. For example, tensional stress at surface may be reduced by the presence of stiff layers (e.g. lavas), or increased by soft layers (e.g. pyroclastic units) compared to generic simulations using a homogeneous background medium. Overall we find that the presence of mechanically soft material promotes surface fracture initiation. In addition we suggest that the position of peak tensional stress at surface derived by the numerical models does not represent that related to the position of the bounding ring-fault, but is instead related to the position of initial tensional fractures appearing prior to the collapse faults.
机译:火山口坍塌可归因于岩浆室减压后沿边界亚垂直法向断层(环断层)对岩浆室顶板的沉降。先前已经表明,为了使环断裂引发并因此促进坍塌,表面和岩浆腔周围的应力场必须满足特定的临界条件。在这里,我们介绍了使用有限元方法研究地壳分层对局部应力场分布的影响的新数值模型。将结果与现有的故障触发标准进行比较。通过改变放置在岩浆室上方的层的刚性(杨氏模量)以及该室所在的基质岩石,模拟了不同的地下情况。我们考虑对岩浆室减压,以模拟岩浆抽出。结果表明,机械分层是形成环断层所需的应力条件的罕见实现中的又一阶变量,并且可能在促进或抑制破火山口塌陷中起作用。我们表明,对于给定的几何构造,岩浆腔上方机械刚性或软岩性的发生和相对分布会影响地球表面最大拉应力的大小和位置。例如,与使用均质背景介质的一般模拟相比,可以通过存在硬质层(例如熔岩)来降低表面张力,或通过软层(例如火山碎屑单元)来增加表面张力。总的来说,我们发现机械上柔软的材料的存在会促进表面断裂的产生。另外,我们认为,由数值模型推导出的表面上的最大张应力位置并不代表与边界断层的位置有关,而与塌陷断层之前出现的初始张裂的位置有关。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号