...
首页> 外文期刊>Journal of Volcanology and Geothermal Research2012V243-244NOCT,15 >Shallow and deep controls on lava lake surface motion at Kilauea Volcano
【24h】

Shallow and deep controls on lava lake surface motion at Kilauea Volcano

机译:基拉韦厄火山熔岩湖表面运动的浅层和深层控制

获取原文
获取原文并翻译 | 示例

摘要

Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kilauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering - a shallowly -rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake. Published by Elsevier B.V.
机译:熔岩湖泊为岩浆活动提供了一个难得的窗口,湖面运动已被用来推断岩浆系统的更深层特性。在基拉韦厄火山顶峰的Halema'uma'u火山口,过去几年的多学科观测表明,熔岩湖的表面运动大致可分为两种状态:1)稳定和2)不稳定。稳定的行为是由湖深处的熔岩上升(大概是直接从管道中)上升驱动的,并且是一个固有的过程,通常会驱动熔岩湖表面运动。这种稳定的行为可以被飞溅驱动的不稳定流动(通常是逆转)时期打断,这是一个浅层的过程,通常是由火山口壁上的小碎石在外在触发的。飞溅源处的破裂气泡会产生空隙和局部表面凹陷,从而吸引并消耗周围的表面结皮。因此,飞溅是熔岩向下流而不是向上流的位置。稳定(即深层,上升流驱动)和不稳定(即浅层,飞溅驱动)行为通常会随时间交替变化,具有特征性的表面速度,流向和表面温度状况,并且还与飞溅强度,除气速率,熔岩的变化相对应水平和地震震颤。这些结果表明,源自不同深度的多个过程可以控制熔岩湖表面的运动,因此需要长期的跨学科监测以分离这些影响。这些观察结果表明,湖泊表面运动并不总是较深的湖泊或岩浆过程的可靠替代。根据这些观察结果,我们认为浅层的除气(散布)而不是湖泊对流会导致Erta'Ale熔岩湖报道的湖泊运动变化。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号