首页> 外文期刊>Journal of Volcanology and Geothermal Research >Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy
【24h】

Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy

机译:新西兰汤加里罗火山中心的剪切波速度结构:快瑞利波和慢洛夫波表明强烈的浅层各向异性

获取原文
获取原文并翻译 | 示例
           

摘要

Models of the velocity structure of volcanoes can help define possible magma pathways and contribute to calculating more accurate earthquake locations, which can help with monitoring volcanic activity. However, shear wave velocity of volcanoes is difficult to determine from traditional seismic techniques, such as local earthquake tomography (LET) or refraction/reflection surveys. Here we use the recently developed technique of noise cross correlation of continuous seismic data to investigate the subsurface shear-wave velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, focusing on the active Ruapehu and Tongariro Volcanoes. We observe both the fundamental and first higher-order modes of Rayleigh and Love waves within our noise dataset, made from stacks of 15 min cross-correlation functions. We manually pick group velocity dispersion curves from over 1900 correlation functions, of which we consider 1373 to be high quality. We subsequently invert a subset of the fundamental mode Rayleigh- and Love-wave dispersion curves both independently and jointly for one dimensional shear-wave velocity (Vs) profiles at Ruapehu and Tongariro Volcanoes. Vs increases very slowly at a rate of approximately 0.2 km/s per km depth beneath Ruapehu, suggesting that progressive hydro thermal alteration mitigates the effects of compaction driven velocity increases. At Tongariro, we observe larger Vs increases with depth, which we interpret as different layers within Tongariro's volcanic system above altered basement greywacke. Slow Vs, on the order of 1-2 km/s, are compatible with P-wave velocities (using a Vp/Vs ratio of 1.7) from existing velocity profiles of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation methods.
机译:火山速度结构模型可以帮助定义可能的岩浆通道,并有助于计算更准确的地震位置,从而有助于监测火山活动。但是,很难通过传统的地震技术来确定火山的剪切波速度,例如当地的地震层析成像(LET)或折射/反射调查。在这里,我们使用最新开发的连续地震数据的噪声互相关技术来研究新西兰汤加里罗火山中心(TgVC)的地下剪切波速度结构,重点是活跃的鲁阿佩胡和汤加里罗火山。我们在噪声数据集中观察到了由15分钟互相关函数组成的瑞利波和洛夫波的基本模式和一阶高阶模式。我们从1900多个相关函数中手动选择组速度色散曲线,我们认为其中1373个是高质量的。随后,我们针对Ruapehu和Tongariro火山的一维剪切波速度(Vs)剖面,独立地和共同地反转了基本模态瑞利波和拉夫波色散曲线的子集。在Ruapehu下,Vs以每公里深度约0.2 km / s的速率非常缓慢地增加,这表明渐进的水热变化减轻了压实驱动速度增加的影响。在汤加里罗(Tongariro),我们观察到较大的Vs随着深度增加而增加,我们将其解释为汤加里罗(Tongariro)火山系统内基底层greywacke上方不同层。慢速Vs约为1-2 km / s,与TgVC内现有速度剖面的P波速度(使用Vp / Vs比为1.7)和世界范围内对浅火山的研究观察到的速度兼容使用环境噪声互相关方法的系统。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号