...
首页> 外文期刊>Journal of Vibration and Acoustics >Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation
【24h】

Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation

机译:含常数相位插值的多项式混沌展开的非线性气动弹性系统的不确定度量化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The present study focuses on the uncertainty quantification of an aeroelastic instability system. This is a classical dynamical system often used to model the flow induced oscillation of flexible structures such as turbine blades. It is relevant as a preliminary fluid-structure interaction model, successfully demonstrating the oscillation modes in blade rotor structures in attached flow conditions. The potential flow model used here is also significant because the modern turbine rotors are, in general, regulated in stall and pitch in order to avoid dynamic stall induced vibrations. Geometric nonlinearities are added to this model in order to consider the possibilities of large twisting of the blades. The resulting system shows Hopf and period-doubling bifurcations. Parametric uncertainties have been taken into account in order to consider modeling and measurement inaccuracies. A quadrature based spectral uncertainty tool called polynomial chaos expansion is used to quantify the propagation of uncertainty through the dynamical system of concern. The method is able to capture the bifurcations in the stochastic system with multiple uncertainties quite successfully. However, the periodic response realizations are prone to time degeneracy due to an increasing phase shifting between the realizations. In order to tackle the issue of degeneracy, a corrective algorithm using constant phase interpolation, which was developed earlier by one of the authors, is applied to the present aeroelastic problem. An interpolation of the oscillatory response is done at constant phases instead of constant time and that results in time independent accuracy levels.
机译:本研究的重点是气动弹性不稳定性系统的不确定性量化。这是一个经典的动力学系统,通常用于对诸如涡轮机叶片之类的柔性结构的流动引起的振动进行建模。它与初步的流体-结构相互作用模型相关,成功地证明了在附加流动条件下叶片转子结构中的振动模式。这里使用的潜在流量模型也很重要,因为现代涡轮机转子通常在失速和螺距中进行调节,以避免动态失速引起的振动。为了考虑叶片较大扭曲的可能性,将几何非线性添加到该模型中。生成的系统显示出Hopf分岔和周期倍增。为了考虑建模和测量的误差,已经考虑了参数不确定性。基于正交的频谱不确定性工具(称为多项式混沌扩展)用于量化不确定性在相关动力学系统中的传播。该方法能够非常成功地捕获具有多个不确定性的随机系统中的分叉。但是,由于实现之间的相移增加,因此周期性响应实现容易出现时间退化。为了解决退化的问题,由一位作者较早开发的使用恒定相位插值的校正算法被应用于当前的空气弹性问题。振荡响应的插值是在恒定相位而不是恒定时间进行的,这导致了与时间无关的精度级别。

著录项

  • 来源
    《Journal of Vibration and Acoustics》 |2013年第5期|051034.1-051034.13|共13页
  • 作者单位

    Department of Aerospace Engineering,NT Madras,Chennai 600036, India,Department of Civil and Environmental Engineering, Carleton University, Ottawa ON K1S 5B6, Canada;

    Center for Turbulence Research, Stanford University, Stanford, CA 94305,Scientific Staff Member, Center for Mathematics and Computer Science, Amsterdam, The Netherlands;

    Department of Aerospace Engineering, IIT Madras, Chennai 600036, Indialz;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号