首页> 外文期刊>Journal of Vibration and Acoustics >Elastodynamics of a Two-Dimensional Square Lattice With Entrained Fluid-Part Ⅰ: Comparison With Biot's Theory
【24h】

Elastodynamics of a Two-Dimensional Square Lattice With Entrained Fluid-Part Ⅰ: Comparison With Biot's Theory

机译:夹带流体的二维方格的弹性动力学-第一部分:与毕奥特理论的比较

获取原文
获取原文并翻译 | 示例
       

摘要

In the present paper, the performance of Biot's theory is investigated for wave propagation in cellular and porous solids with entrained fluid for configurations with well-known drained (no fluid) mechanical properties. Cellular solids differ from porous solids based on their relative density p~* < 0.3. The distinction is phenomenological and is based on the applicability of beam (or plate) theories to describe microstructural deformations. The wave propagation in a periodic square lattice is analyzed with a finite-element model, which explicitly considers fluid-structure interactions, structural deformations, and fluid-pressure variations. Bloch theorem is employed to enforce symmetry conditions of a representative volume element and obtain a relation between frequency and wave-vector. It is found that the entrained fluid does not affect shear waves, beyond added-mass effects, so long as the wave spectrum is below the pores' natural frequency. One finds strong dispersion in cellular solids as a result of resonant scattering, in contrast to Bragg scattering dominant in porous media. Configurations with 0.0001 ≤ p~* ≤ 1 are investigated. One finds that Biot's theory, derived from averaged microstructural quantities, well estimates the phase velocity of pressure and shear waves for cellular porous solids, except for the limit p~*→1. For frequencies below the first resonance of the lattice walls, only the fast-pressure mode of the two modes predicted by Biot's theory is found. It is also shown that homogenized models for shear waves based on microstructural deformations for drained conditions agree with Biot's theory.
机译:在本文中,针对具有众所周知的排空(无流体)机械性能的构造,研究了Biot理论在带夹带流体的多孔和多孔固体中的波传播性能。细胞固体与多孔固体的相对密度p〜* <0.3。这种区别是现象学上的,并且基于梁(或板)理论描述微观结构变形的适用性。使用有限元模型分析周期方格中的波传播,该模型明确考虑了流体-结构相互作用,结构变形和流体压力变化。布洛赫定理被用来强制代表体元素的对称条件,并获得频率和波矢量之间的关系。已经发现,夹杂的流体不会影响剪切波,除了附加质量效应外,只要波谱低于孔的固有频率即可。与共振在多孔介质中的布拉格散射相反,人们发现共振散射在细胞固体中具有很强的分散性。研究了0.0001≤p〜*≤1的配置。人们发现,根据平均微结构量得出的比奥理论,可以很好地估计出多孔多孔固体的压力波和剪切波的相速度,除了极限p〜*→1。对于低于晶格壁的第一共振的频率,仅发现了由毕奥特理论预测的两种模式中的快速压力模式。研究还表明,基于排水条件下微结构变形的剪切波均化模型与Biot理论是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号