...
首页> 外文期刊>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films >Microstructure and tribological performance of nanocomposite Ti–Si–C–N coatings deposited using hexamethyldisilazane precursor
【24h】

Microstructure and tribological performance of nanocomposite Ti–Si–C–N coatings deposited using hexamethyldisilazane precursor

机译:六甲基二硅氮烷前体沉积的纳米复合Ti–Si–C–N涂层的微观结构和摩擦学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Thick nanocomposite Ti–Si–C–N coatings (20–30 μm) were deposited on Ti–6Al–4V substrate by magnetron sputtering of Ti in a gas mixture of Ar, N2, and hexamethyldisilazane (HMDSN) under various deposition conditions. Microstructure and composition of the coatings were studied using scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy, while the mechanical and tribological properties of these coatings were studied using Rc indentation, and micro- and nanoindentations, solid particle erosion testing, and ball-on-disk wear testing. It has been observed that the Si concentration of these coatings is varied from 0% (TiN) to 15% (Ti–Si–C–N), while the structure of these coatings is similar to the nanocomposite Ti–Si–N coatings and consists of nanocrystalline B1 structured Ti(C,N) in an amorphous matrix of SiCxNy with the grain size of 5->100 nm, depending on the coating preparation process. These coatings exhibit excellent adhesion when subjected to Rc indentation tests. The microhardness of these coatings varies from 1200 to 3400 HV25, while the nanohardness varies from 10 to 26 GPa. Both the microhardness and nanohardness are slightly lower than those of similar coatings prepared using trimethylsilane. However, the erosion test using a microsand erosion tester at both 30° and 90° incident angles shows that these coatings have very high erosion resistance and up to a few hundred times of improvement has been observed. These coatings also exhibit very high resistance to sliding wear with a low coefficient of friction of about 0.2 in dry sliding. There are a few advantages of using the HMDSN precursor to prepare the Ti–S-n-ni–C–N coatings over conventional magnetron sputtered deposition of Ti–Si–N coatings including composition uniformity, precursor handling safety, and high deposition rate. The coatings can be applied to protect gas turbine compressor blades from solid particle erosion and steam turbine blades from liquid droplet erosion, as well as other mechanical components that experience severe abrasion. These coatings may also be used in areas where both high wear resistance and low friction are required.
机译:在不同沉积条件下,在氩气,氮气和六甲基二硅氮烷(HMDSN)的混合气体中,通过磁控溅射Ti在Ti-6Al-4V衬底上沉积厚的纳米复合Ti–Si–C–N涂层(20–30μm)。使用扫描电子显微镜,X射线衍射和能量色散X射线光谱学研究了涂层的微观结构和组成,同时使用Rc压痕,微米和纳米压痕,固体颗粒侵蚀研究了这些涂层的机械和摩擦学性能。测试,以及圆盘磨损测试。已经观察到,这些涂层的硅浓度从0%(TiN)到15%(Ti–Si–C–N)不等,而这些涂层的结构类似于纳米复合Ti–Si–N涂层,并且由纳米晶B1结构的Ti(C,N)组成的SiCxNy非晶基体,其晶粒尺寸为5-> 100 nm,具体取决于涂层制备工艺。这些涂层在进行Rc压痕测试时表现出出色的附着力。这些涂层的显微硬度在1200至3400 HV25之间变化,而纳米硬度在10至26 GPa之间变化。显微硬度和纳米硬度均略低于使用三甲基硅烷制备的类似涂层的显微硬度和纳米硬度。但是,使用微砂腐蚀测试仪在30°和90°入射角下进行的腐蚀测试表明,这些涂层具有非常高的抗腐蚀性能,并且已观察到多达数百次的改进。这些涂层还表现出非常高的抗滑动磨损性能,在干式滑动中具有约0.2的低摩擦系数。与传统的磁控溅射Ti–Si–N涂层相比,使用HMDSN前体制备Ti–S-n-ni–C–N涂层具有一些优势,包括成分均匀性,前体处理安全性和高沉积速率。该涂料可用于保护燃气轮机压缩机叶片免受固体颗粒腐蚀,保护蒸汽轮机叶片免受液滴腐蚀以及其他严重磨损的机械部件。这些涂料还可用于需要高耐磨性和低摩擦力的区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号