...
首页> 外文期刊>Journal of turbomachinery >Inverse Aeroacoustic Design of Axial Fans Using Genetic Optimization and the Lattice-Boltzmann Method
【24h】

Inverse Aeroacoustic Design of Axial Fans Using Genetic Optimization and the Lattice-Boltzmann Method

机译:基于遗传优化和Lattice-Boltzmann方法的轴流风机反空气声设计

获取原文
获取原文并翻译 | 示例
           

摘要

The noise emitted by axial fans plays an integral role in product design. When conventional design procedures are applied, the aeroacoustic properties are controlled via an extensive trial-and-error process. This involves building physical prototypes and performing acoustic measurements. In general, this procedure makes it difficult for a designer to gain an understanding of the functional relationship between the noise and geometrical parameters of the fan. Hence, it is difficult for a human designer to control the aeroacoustic properties of the fan. To reduce the complexity of this process, we propose an inverse design methodology driven by a genetic algorithm. It aims to find the fan geometry for a set of given objectives. These include, most notably, the sound pressure frequency spectrum, aerodynamic efficiency, and pressure head. Individual bands of the sound pressure frequency spectrum may be controlled implicitly as a function of certain geometric parameters of the fan. In keeping with inverse design theory, we represent the design of axial fans as a multi-objective multiparameter optimization problem. The individual geometric components of the fan (e.g., rotor blades, winglets, guide vanes, shroud, and diffusor) are represented by free-form surfaces. In particular, each blade of the fan is individually parameterized. Hence, the resulting fan is composed of geometrically different blades. This approach is useful when studying noise reduction. For the analysis of the flow field and associated objectives, we utilize a standard Reynolds averaged Navier-Stokes (RANS) solver. However, for the evaluation of the generated noise, a meshless lattice-Boltzmann solver is employed. The method is demonstrated for a small axial fan, for which tonal noise is reduced.
机译:轴流风扇发出的噪音在产品设计中起着不可或缺的作用。当采用常规设计程序时,通过广泛的反复试验过程来控制空气声学特性。这涉及构建物理原型和执行声学测量。通常,此过程使设计人员很难了解风扇的噪声和几何参数之间的功能关系。因此,对于人类设计者而言,难以控制风扇的空气声学特性。为了降低此过程的复杂性,我们提出了一种由遗传算法驱动的逆设计方法。它旨在找到一组给定目标的风扇几何形状。这些尤其包括声压频谱,空气动力效率和压头。可以根据风扇的某些几何参数隐式地控制声压频谱的各个频带。与逆向设计理论保持一致,我们将轴流风扇的设计表示为一个多目标多参数优化问题。风扇的各个几何组成部分(例如,转子叶片,小翼,导向叶片,护罩和扩散器)由自由曲面表示。特别是,风扇的每个叶片都单独进行了参数设置。因此,最终的风扇由几何上不同的叶片组成。在研究降噪时,此方法很有用。为了分析流场和相关目标,我们使用了标准的雷诺平均纳维斯托克斯(RANS)求解器。但是,为了评估所产生的噪声,采用了无网格的格子-玻尔兹曼求解器。该方法已针对小型轴流风机进行了演示,从而减小了音调噪音。

著录项

  • 来源
    《Journal of turbomachinery》 |2014年第4期|041011.1-041011.10|共10页
  • 作者单位

    Ninsight,Maiffredygasse 4,Graz 8010, Austria;

    ebm-papst,Hermann-Papst-StraBe 1,St. Georgen 78112, Germany;

    ebm-papst,Hermann-Papst-StraBe 1,St. Georgen 78112, Germany;

    ebm-papst,Hermann-Papst-StraBe 1,St. Georgen 78112, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号