...
首页> 外文期刊>Journal of turbomachinery >Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
【24h】

Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations

机译:基于360度时变数值模拟的涡轮机级轮圈进气口进气

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical simulations of turbine rim seal experiments are conducted with a time-dependent, 360 deg computational fluid dynamics (CFD) model of the complete turbine stage with a rim seal and cavity to increase understanding of the rim seal ingestion physics. The turbine stage has 22 vanes and 28 blades and is modeled with a uniform flow upstream of the vane inlet, a pressure condition downstream of the blades, and three coolant flow conditions previously employed during experiments at Arizona State University. The simulations show the pressure fields downstream of the vanes and upstream of the blades interacting to form a complex pressure pattern above the rim seal. Circumferential distributions of 15 to 17 sets of ingress and egress velocities flow through the rim seal at the two modest coolant flow rate conditions. These flow distributions rotate at approximately wheel speed and are not equal to the numbers of blades or vanes. The seal velocity distribution for a high coolant flow rate with little or no ingestion into the stator wall boundary layer is associated with the blade pressure field. These pressure field characteristics and the rim seal ingress/egress pattern provide new insight to the physics of rim seal ingestion. Flow patterns within the rim cavity have large cells that rotate in the wheel direction at a slightly slower speed. These secondary flows are similar to structures noted in previous a 360 deg model and large sector models but not obtained in a single blade or vane sector model with periodic boundary condition at sector boundaries. The predictions of pressure profiles, sealing effectiveness, and cavity velocity components are compared with experimental data.
机译:涡轮缘密封实验的数值模拟是对具有涡轮缘密封和腔体的完整涡轮级的时变,360度计算流体动力学(CFD)模型进行的,以增进对边缘密封摄入物理的理解。涡轮级具有22个叶片和28个叶片,并以叶片入口上游的均匀流动,叶片下游的压力状况以及亚利桑那州立大学实验期间先前采用的三种冷却剂流动状况进行建模。仿真显示,叶片下游和叶片上游的压力场相互作用,在轮辋密封件上方形成复杂的压力模式。在两种适度的冷却剂流速条件下,周缘分布的15至17组进,出口速度流经轮辋密封。这些流量分布以大约轮速旋转,并且不等于叶片或叶片的数量。叶片压力场与高冷却液流量的密封速度分布有关,而很少或根本没有吸入定子壁边界层。这些压力场特征和轮辋密封件的进/出模式为轮辋密封件的摄入物理学提供了新的见解。轮辋腔内的流型具有较大的孔,这些孔在轮方向上以稍慢的速度旋转。这些二次流类似于之前的360度模型和大扇形模型中提到的结构,但不能在扇形边界处具有周期性边界条件的单个叶片或叶片扇形模型中获得。将压力分布,密封效果和型腔速度分量的预测与实验数据进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号