...
首页> 外文期刊>Journal of turbomachinery >High Resolution Heat Transfer Measurements on the Stator Endwall of an Axial Turbine
【24h】

High Resolution Heat Transfer Measurements on the Stator Endwall of an Axial Turbine

机译:轴向涡轮机定子端壁上的高分辨率传热测量

获取原文
获取原文并翻译 | 示例

摘要

In order to continue increasing the efficiency of gas turbines, an important effort is made on the thermal management of the turbine stage. In particular, understanding and accurately estimating the thermal loads in a vane passage is of primary interest to engine designers looking to optimize the cooling requirements and ensure the integrity of the components. This paper focuses on the measurement of endwall heat transfer in a vane passage with a three-dimensional (3D) airfoil shape and cylindrical endwalls. It also presents a comparison with predictions performed using an in-house developed Reynolds-Averaged Navier-Stokes (RANS) solver featuring a specific treatment of the numerical smoothing using a flow adaptive scheme. The measurements have been performed in a steady state axial turbine facility on a novel platform developed for heat transfer measurements and integrated to the nozzle guide vane (NGV) row of the turbine. A quasi-isothermal boundary condition is used to obtain both the heat transfer coefficient and the adiabatic wall temperature within a single measurement day. The surface temperature is measured using infrared thermography through small view ports. The infrared camera is mounted on a robot arm with six degrees of freedom to provide high resolution surface temperature and a full coverage of the vane passage. The paper presents results from experiments with two different flow conditions obtained by varying the mass flow through the turbine: measurements at the design point (Re_C_(ax) = 7.2 ×10~5) and at a reduced mass flow rate (Re_C_(ax), = 5.2 × 10~5). The heat transfer quantities, namely the heat transfer coefficient and the adiabatic wall temperature, are derived from measurements at 14 different isothermal temperatures. The experimental data are supplemented with numerical predictions that are deduced from a set of adiabatic and diabatic simulations. In addition, the predicted flow field in the passage is used to highlight the link between the heat transfer patterns measured and the vortical structures present in the passage.
机译:为了继续提高燃气轮机的效率,在燃气轮机级的热管理上做出了重要的努力。尤其是,了解和准确估算叶片通道中的热负荷是寻求优化冷却要求并确保组件完整性的发动机设计人员的首要兴趣。本文重点研究具有三维(3D)翼型形状和圆柱端壁的叶片通道中端壁传热的测量。它还提供了与使用内部开发的雷诺平均Navier-Stokes(RANS)求解器进行的预测的比较,该求解器使用流量自适应方案对数值平滑进行了特殊处理。测量是在稳态轴流式涡轮机设备上进行的,该设备在新型平台上进行了传热测量,并集成到涡轮机的喷嘴导向叶片(NGV)行中。准等温边界条件用于在单个测量日内获得传热系数和绝热壁温。使用红外热成像仪通过小观察口测量表面温度。红外摄像机以六个自由度安装在机械臂上,以提供高分辨率的表面温度并完全覆盖叶片通道。本文介绍了通过改变通过涡轮的质量流量而获得的两种不同流量条件下的实验结果:在设计点(Re_C_(ax)= 7.2×10〜5)和降低的质量流量(Re_C_(ax))下进行的测量,= 5.2×10〜5)。传热量,即传热系数和绝热壁温,是从在14种不同的等温温度下的测量得出的。实验数据补充了从一组绝热和绝热模拟得出的数值预测。另外,通道中的预测流场用于突出显示所测量的传热模式与通道中存在的旋涡结构之间的联系。

著录项

  • 来源
    《Journal of turbomachinery》 |2015年第4期|041005.1-041005.10|共10页
  • 作者单位

    Laboratory for Energy Conversion, ETH Zurich, Sonnegstrasse 3, Zurich 8006, Switzerland;

    Laboratory for Energy Conversion, ETH Zurich, Sonnegstrasse 3, Zurich 8006, Switzerland;

    Siemens Energy, Inc., 4400 Alafaya Trail, Orlando, FL 32826;

    MTU Aero Engines AG, Dachauer Strasse 665, Munich D-80995, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号