...
首页> 外文期刊>Journal of turbomachinery >A novel suction-side winglet design philosophy for high-pressure turbine rotor tips
【24h】

A novel suction-side winglet design philosophy for high-pressure turbine rotor tips

机译:高压涡轮转子叶尖的新型吸力侧小翼设计原理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Winglet tips are promising candidates for future high-pressure turbine rotors. Many studies found that the design of the suction-side winglet is the key to the aerodynamic performance of a winglet tip, but there is no general agreement on the exact design philosophy. In this paper, a novel suction-side winglet design philosophy in a turbine cascade is introduced. The winglets are obtained based on the near-tip flow field of the datum tip geometry. The suction-side winglet aims to reduce the tip leakage flow particularly in the front part of the blade passage. It is found that on the casing endwall, the pressure increases in the area where the winglet is used. This reduces the tip leakage flow in the front part of the blade passage and the pitchwise pressure gradient on the endwall. As a result, the size of the tip leakage vortex reduces. A surprising observation is that the novel optimized winglet tip design eliminates the passage vortex and results in a further increasing of the efficiency. The tip leakage loss of the novel winglet tip is 18.1% lower than the datum cavity tip, with an increase of tip surface area by only 19.3%. The spanwise deflection of the winglet due to the centrifugal force is small. The tip heat load of the winglet tip is 17.5% higher than that of the cavity tip. Numerical simulation shows that in a turbine stage, this winglet tip increases the turbine stage efficiency by 0.9% mainly by eliminating the loss caused by the passage vortex at a tip gap size of 1.4% chord compared with a cavity tip.
机译:小翼技巧是未来高压涡轮转子的有希望的候选人。许多研究发现,吸力侧小翼的设计是小翼尖空气动力学性能的关键,但是在确切的设计理念上并没有达成共识。本文介绍了涡轮叶栅中一种新颖的吸力侧小翼设计原理。根据基准尖端几何形状的近尖端流场获得小翼。吸力侧小翼的目的是减少叶尖泄漏,特别是在叶片通道的前部。发现在壳体端壁上,在使用小翼的区域中压力增加。这减少了叶片通道前部的叶尖泄漏流和端壁上的螺距压力梯度。结果,尖端泄漏涡旋的尺寸减小。令人惊讶的观察是,新颖的优化小翼尖设计消除了通道涡流,并进一步提高了效率。新型小翼尖的尖端泄漏损失比基准腔尖端低18.1%,而尖端表面积仅增加了19.3%。由于离心力,小翼的翼展方向偏转很小。小翼尖端的尖端热负荷比腔体尖端的热负荷高17.5%。数值模拟表明,在涡轮级中,该小翼梢主要是通过消除与腔尖相比,在间隙为1.4%时,由于涡流造成的损失而使涡轮级效率提高了0.9%。

著录项

  • 来源
    《Journal of turbomachinery》 |2017年第11期|111002.1-111002.11|共11页
  • 作者

    Zhou Chao; Zhong Fangpan;

  • 作者单位

    State Key Laboratory for Turbulence and Complex Systems, BIC-ESAT, Collaborative Innovation Center of Advanced Aero-Engine, Peking University, Beijing, China;

    College of Engineering, Peking University, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号