首页> 外文期刊>Journal of turbomachinery >Thermomechanical analysis of transient temperatures in a radial turbine wheel
【24h】

Thermomechanical analysis of transient temperatures in a radial turbine wheel

机译:径向涡轮机叶轮瞬态温度的热力学分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In turbomachinery design, the accurate prediction of the life cycle is one of the most challenging issues. Traditionally, life cycle calculations for radial turbine wheels of turbochargers focus on mechanical loads such as centrifugal and vibration forces. Due to the increase of exhaust gas temperatures in the last years, thermomechanical fatigue in the turbine wheel came more into focus. In order to account for the thermally induced stresses in the turbine wheel as a part of the standard design process, a fast method is required for predicting metal temperatures. In order to develop a suitable method, the mechanisms that cause the thermal stresses have to be understood. Thus, in a first step, a detailed analysis of the temperature fields is conducted in the present paper. Extensive numerical simulations of a thermal shock process are carried out and validated by experimental data from a test rig. Based on the results, the main heat transfer mechanisms are identified, which are crucial for the critical thermal stresses in transient operation. It is shown that these critical stresses mainly depend on local 3D flow structures. With this understanding, two fast methods to calculate the transient temperatures in a radial turbine were developed. The first method is based on a standard method for transient fluid/ solid heat transfer. In this standard method, heat transfer coefficients are derived from steady-state computational fluid dynamics (CFD)/conjugate heat transfer (CHT) calculations and are linearly interpolated over the duration of the transient heating or cooling process. In the new method, this interpolation procedure was modified to achieve an exponential behavior of the heat transfer coefficients over the transient process in order to enable a sufficient accuracy. Additionally, a second method was developed. In this method, the specific heat capacity of the solid state is reduced by a "speed up factor" to shorten the duration of the transient heating or cooling process. With the shortened processes, the computing times can be reduced significantly. After the calculations, the resulting times are transferred into realistic heating or cooling times by multiplying them with the speed up factor. The results of both methods are evaluated against experimental data and against the results of a numerical method known from literature. The methods show a good agreement with those data.
机译:在涡轮机械设计中,生命周期的准确预测是最具挑战性的问题之一。传统上,涡轮增压器的径向涡轮机叶轮的寿命周期计算着重于机械负载,例如离心力和振动力。由于近年来排气温度的升高,涡轮机叶轮中的热机械疲劳成为人们关注的焦点。作为标准设计过程的一部分,为了考虑涡轮中的热应力,需要一种快速的方法来预测金属温度。为了开发一种合适的方法,必须理解引起热应力的机理。因此,在第一步中,本文对温度场进行了详细分析。对热冲击过程进行了广泛的数值模拟,并通过试验台的实验数据进行了验证。根据结果​​,确定了主要的传热机制,这对于瞬态运行中的临界热应力至关重要。结果表明,这些临界应力主要取决于局部3D流动结构。基于这种理解,开发了两种计算径向涡轮瞬态温度的快速方法。第一种方法基于瞬态流体/固体传热的标准方法。在这种标准方法中,传热系数是从稳态计算流体力学(CFD)/共轭传热(CHT)计算得出的,并在瞬态加热或冷却过程的整个过程中进行线性插值。在新方法中,对该插值过程进行了修改,以实现瞬态过程中传热系数的指数行为,以实现足够的精度。另外,开发了第二种方法。在这种方法中,固态的比热容降低了“加速因子”,以缩短瞬态加热或冷却过程的持续时间。随着过程的缩短,计算时间可以大大减少。计算后,通过将它们乘以加速因子,将所得时间转换为实际的加热或冷却时间。两种方法的结果均根据实验数据和文献中已知的数值方法的结果进行评估。这些方法与这些数据显示出良好的一致性。

著录项

  • 来源
    《Journal of turbomachinery》 |2017年第9期|091001.1-091001.10|共10页
  • 作者单位

    Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University, Templergraben 55, Aachen, Germany;

    Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University, Templergraben 55, Aachen, Germany;

    Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University, Templergraben 55, Aachen, Germany;

    Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University, Templergraben 55, Aachen, Germany;

    Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University, Templergraben 55, Aachen, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号