首页> 外文期刊>Journal of turbomachinery >Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array-Part Ⅰ:Convective Heat Transfer Results and Optimization
【24h】

Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array-Part Ⅰ:Convective Heat Transfer Results and Optimization

机译:雷诺数,孔型和孔倾角对射流阵列冷却性能的影响-第一部分:对流传热结果及优化

获取原文
获取原文并翻译 | 示例
           

摘要

This study comprehensively illustrates the effect of Reynolds number, hole spacing, jet-to-target distance, and hole inclination on the convective heat transfer performance of an impinging jet array. Spatially resolved target surface heat transfer coefficient distributions are measured using transient liquid crystal (TLC) measurement techniques, over a range of Reynolds numbers from 5000 to 25,000. Considered are effects of streamwise and spanwise jet-to-jet spacing (X/D, Y/D: 4-8) and jet-to-target plate distance (Z/D: 0.75-3). Overall, a test matrix of 36 different configurations is employed. In addition, the effect of hole inclination (θ: 0-40 deg) on the heat transfer coefficient is investigated. Optimal hole spacing arrangements and impingement distance are pointed out to maximize the area-averaged Nusselt number and minimize the amount of cooling air. Also included is a new correlation, based on that of Florschuetz et ah, to predict row-averaged Nusselt number. The new correlation is capable to cover low ZID ~ 0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.
机译:这项研究全面地说明了雷诺数,孔距,射流到目标的距离以及孔倾角对撞击射流阵列对流传热性能的影响。使用瞬态液晶(TLC)测量技术在雷诺数范围从5000到25,000的范围内测量空间分辨的目标表面传热系数分布。考虑了沿流向和跨向的射流到射流间距(X / D,Y / D:4-8)和射流到目标板间距(Z / D:0.75-3)的影响。总体而言,采用了36种不同配置的测试矩阵。另外,研究了孔倾角(θ:0-40度)对传热系数的影响。指出了最佳的孔间距布置和冲击距离,以使面积平均的努塞尔数最大,并使冷却空气量最小。还包括基于Florschuetz等人的新关联,以预测行平均的Nusselt数。新的相关性能够覆盖低的ZID〜0.75,并能更好地预测行平均Nusselt数,这被证明是一种有效的碰撞设计工具。

著录项

  • 来源
    《Journal of turbomachinery》 |2017年第4期|041002.1-041002.11|共11页
  • 作者单位

    Gas Turbine Institute,Department of Thermal Engineering,Tsinghua University,Beijing 100084, China;

    Gas Turbine Institute,Department of Thermal Engineering,Tsinghua University,Beijing 100084, China;

    Department of Mechanical Engineering and Material Science,University of Pittsburgh,Pittsburgh, PA 15213;

    Gas Turbine Institute,Department of Thermal Engineering,Tsinghua University,Beijing 100084, China;

    Gas Turbine Institute,Department of Thermal Engineering,Tsinghua University,Beijing 100084, China;

    Department of Mechanical and Aerospace Engineering,University of Alabama in Huntsville,Huntsville, AL 35899;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号