首页> 外文期刊>Journal of Transportation Engineering >Methodology for Pavement Design Reliability and Back Analysis Using Markov Chain Monte Carlo Simulation
【24h】

Methodology for Pavement Design Reliability and Back Analysis Using Markov Chain Monte Carlo Simulation

机译:马尔可夫链蒙特卡洛模拟的路面设计可靠性和反分析方法

获取原文
获取原文并翻译 | 示例
           

摘要

Given the increasing cost of designing and building new highway pavements, reliability analysis has become vital to ensure that a given pavement performs as expected in the field. Recognizing the importance of failure analysis to safety, reliability, performance, and economy, back analysis has been employed in various engineering applications to evaluate the inherent uncertainties of the design and analysis. The probabilistic back analysis method formulated on Bayes' theorem and solved using the Markov chain Monte Carlo simulation method with a Metropolis-Hastings algorithm has proved to be highly efficient to address this issue. It is also quite flexible and is applicable to any type of prior information. In this paper, this method has been used to back-analyze the parameters that influence the pavement life and to consider the uncertainty of the mechanistic-empirical pavement design model. The load-induced pavement structural responses (e.g., stresses, strains, and deflections) used to predict the pavement life are estimated using the response surface methodology model developed based on the results of linear elastic analysis. The failure criteria adopted for the analysis were based on the factor of safety (FOS), and the study was carried out for different sample sizes and jumping distributions to estimate the most robust posterior statistics. From the posterior statistics of the case considered, it was observed that after approximately 150 million standard axle load repetitions, the mean values of the pavement properties decrease as expected, with a significant decrease in the values of the elastic moduli of the expected layers. An analysis of the posterior statistics indicated that the parameters that contribute significantly to the pavement failure were the moduli of the base and surface layer, which is consistent with the findings from other studies. After the back analysis, the base modulus parameters show a significant decrease of 15.8% and the surface layer modulus a decrease of 3.12% in the mean value. The usefulness of the back analysis methodology is further highlighted by estimating the design parameters for specified values of the factor of safety. The analysis revealed that for the pavement section considered, a reliability of 89% and 94% can be achieved by adopting FOS values of 1.5 and 2, respectively. The methodology proposed can therefore be effectively used to identify the parameters that are critical to pavement failure in the design of pavements for specified levels of reliability.
机译:鉴于设计和建造新公路路面的成本不断增加,可靠性分析对于确保给定路面在现场的预期性能至关重要。认识到故障分析对安全性,可靠性,性能和经济性的重要性,在各种工程应用中已经采用了反向分析来评估设计和分析的内在不确定性。事实证明,在贝叶斯定理上提出的概率反分析方法以及使用马尔可夫链蒙特卡罗模拟方法和Metropolis-Hastings算法求解的概率反分析方法对于解决此问题非常有效。它也非常灵活,适用于任何类型的先验信息。在本文中,该方法已用于对影响路面寿命的参数进行反分析,并考虑了机械-经验路面设计模型的不确定性。使用基于线性弹性分析结果开发的响应面方法模型,估算了用于预测路面寿命的荷载诱导的路面结构响应(例如应力,应变和挠度)。分析所采用的失效标准基于安全系数(FOS),并且针对不同的样本量和跳跃分布进行了研究,以估计最可靠的后验统计量。从所考虑情况的后验统计,可以发现,在重复进行约1.5亿次标准车轴载荷之后,路面性能的平均值如预期的那样下降,而预期层的弹性模量值则显着下降。对后验统计数据的分析表明,对路面破坏有重大影响的参数是基层和表层的模量,这与其他研究的结果一致。在反分析之后,基本模量参数的平均值显着下降了15.8%,而表面层模量的平均值下降了3.12%。通过为安全系数的指定值估算设计参数,进一步强调了反向分析方法的有用性。分析表明,对于所考虑的路面部分,分别采用1.5和2的FOS值可以达到89%和94%的可靠性。因此,所提出的方法可以有效地用于识别对于指定级别的可靠性在路面设计中对于路面破坏至关重要的参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号