...
首页> 外文期刊>Journal of Time Series Analysis >Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets
【24h】

Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets

机译:海量遥感数据集的时空平滑和EM估计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The use of satellite measurements in climate studies promises many new scientific insights if those data can be efficiently exploited. Due to sparseness of daily data sets, there is a need to fill spatial gaps and to borrow strength from adjacent days. Nonetheless, these satellites are typically capable of conducting on the order of 100,000 retrievals per day, which makes it impossible to apply traditional spatio-temporal statistical methods, even in supercomputing environments. To overcome these challenges, we make use of a spatio-temporal mixed-effects model. For each massive daily data set, dimension reduction is achieved by essentially modelling the underlying process as a linear combination of spatial basis functions on the globe. The application of a dynamical autoregressive model in time, over the reduced space, allows rapid sequential computation of optimal smoothing predictions via the Kalman smoother; this is known as Fixed Rank Smoothing (FRS). The dimension-reduced mixed-effects model contains a number of unknown parameters, including covariance and propagator matrices, which describe the spatial and temporal dependence structure in the reduced-dimensional process. We take an empirical-Bayes approach to inference, which involves estimating the parameters and substituting them into the optimal predictors. Method-of-moments (MM) parameter estimation (currently used in FRS) is typically inefficient compared to maximum likelihood (ML) estimation and can result in large sampling variability. Here, we develop ML estimation via an expectation-maximization (EM) algorithm, which offers stable computation of valid estimators and makes efficient use of spatial and temporal dependence in the data. The two parameter-estimation approaches, MM and ML, are compared in a simulation study. We also apply our methodology to global satellite CO2 measurements: We optimally smooth the sparse daily CO2 maps obtained by the Atmospheric InfraRed Sounder (AIRS) instrument on the Aqua satellite; then, using FRS with EM-estimated parameters, a complete sequence of the daily global CO2 fields can be obtained, together with their associated prediction uncertainties.
机译:如果可以有效地利用这些数据,那么在气候研究中使用卫星测量将带来许多新的科学见解。由于每日数据集的稀疏性,因此需要填补空间空白并借鉴相邻日期的优势。但是,这些卫星通常每天能够进行约100,000次检索,因此即使在超级计算环境中,也无法应用传统的时空统计方法。为了克服这些挑战,我们使用时空混合效应模型。对于每个庞大的每日数据集,通过将基本过程建模为地球上空间基础函数的线性组合,可以实现降维。在减小的空间上及时应用动态自回归模型,可以通过卡尔曼平滑器快速顺序地计算最佳平滑预测;这就是所谓的固定秩平滑(FRS)。降维混合效应模型包含许多未知参数,包括协方差和传播矩阵,这些参数描述了降维过程中的时空依赖性结构。我们采用经验贝叶斯方法进行推理,该方法涉及估计参数并将其替换为最佳预测变量。与最大似然(ML)估计相比,矩法(MM)参数估计(当前在FRS中使用)通常效率低下,并且可能导致较大的采样变异性。在这里,我们通过期望最大化(EM)算法开发ML估计,该算法可提供有效估计量的稳定计算并有效利用数据中的时空依赖性。在仿真研究中比较了两种参数估计方法MM和ML。我们还将我们的方法应用于全球卫星二氧化碳测量:我们优化了通过Aqua卫星上的大气红外测深仪(AIRS)仪器获得的稀疏每日CO2图的平滑度;然后,使用具有EM估计参数的FRS,可以获得每日全球CO2场的完整序列及其相关的预测不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号