...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Continuum nonlinear dynamics of unstable shock waves induced by structural phase transformations in iron
【24h】

Continuum nonlinear dynamics of unstable shock waves induced by structural phase transformations in iron

机译:铁中结构相变引起的不稳定激波的连续非线性动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Iron is the predominant metal in the interior of the Earth and other rocky planets and has also received substantial consideration in materials science and engineering due to its technological importance. Here, a finite deformation continuum framework for combining nonlinear elasto-viscoplasticity with multivariant phase-field theory is used to investigate shock-induced polymorphic phase transitions in single-crystal iron. A large number of low and high-pressure variants with explicit anisotropic pressure-dependent stiffnesses are included with respect to the point-symmetry groups of cubic and hexagonal crystal lattices. Using the element-free Galerkin method with high-performance computing resources, the three-dimensional nonlinear calculations accurately describe some important features reported by the experimental literature, and strongly complement our understanding of the phase-change dynamics in iron at larger time and length scales than hitherto explored by molecular dynamics simulations in the last two decades. The numerical model is able to reproduce unstable shock waves (which break up into elastic, plastic and phase-transition waves), providing new stress-informed insights into the coupling between the high strain rate plasticity and microstructure evolution during the displacive phase transitions. The analyses of time-position diagrams indicate that the prompt plastic relaxation to a nearly hydrostatic state from uniaxial shock-compression is responsible for the peculiar multiphase microstructure with an unexpected gradient selection of high-pressure variants behind the phase-transition wave front. The existence of two-zone sequential sets of "release" and "reload" variants that results from a heterogeneous nucleation instability leads to a specific microstructural fingerprint of the nonlinear dynamics of phase transitions, thus offering novel guidelines for future experimental diagnostics of shock wave propagation in iron. (C) 2019 Elsevier Ltd. All rights reserved.
机译:铁是地球和其他岩石行星内部的主要金属,并且由于其技术重要性,也已在材料科学和工程学中得到广泛考虑。在此,将非线性弹黏塑性与多变量相场理论相结合的有限变形连续体框架,用于研究单晶铁中激振引起的多态相变。关于立方和六方晶格的点对称组,包括大量具有明显的各向异性压力相关刚度的低压和高压变体。使用无元素的Galerkin方法和高性能的计算资源,三维非线性计算可以准确地描述实验文献报道的一些重要特征,并极大地补充了我们对铁在较大的时间和长度尺度下的相变动力学的理解。比过去二十年来通过分子动力学模拟进行的探索。数值模型能够再现不稳定的冲击波(分解为弹性波,塑性波和相变波),从而为位移相变过程中高应变率可塑性与微观结构演化之间的耦合提供了新的应力知悉。时间-位置图的分析表明,单轴冲击压缩使塑性迅速松弛到几乎为静水状态,这是特殊的多相微观结构的原因,在相变波前后方有意料之外的高压变体梯度选择。由异质成核不稳定性导致的“释放”和“重新加载”变体的两个区域顺序集的存在,导致了相变非线性动力学的特定微观结构指纹,从而为未来的实验诊断提供了新的指南冲击波在铁中的传播。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号