首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Exploring the 3D architectures of deep material network in data-driven multiscale mechanics
【24h】

Exploring the 3D architectures of deep material network in data-driven multiscale mechanics

机译:在数据驱动的多尺度力学中探索深层材料网络的3D架构

获取原文
获取原文并翻译 | 示例
       

摘要

This paper extends the deep material network (DMN) proposed by Liu et al. (2019) to tackle general 3-dimensional (3D) problems with arbitrary material and geometric nonlinearities. It discovers a new way of describing multiscale heterogeneous materials by a multi-layer network structure and mechanistic building blocks. The data-driven framework of DMN is discussed in detail about the offline training and online extrapolation stages. Analytical solutions of the 3D building block with a two-layer structure in both small- and finite-strain formulations are derived based on interfacial equilibrium conditions and kinematic constraints. With linear elastic data generated by direct numerical simulations on a representative volume element (RVE), the network can be effectively trained in the offline stage using stochastic gradient descent and advanced model compression algorithms. Efficiency and accuracy of DMN on addressing the long-standing 3D RVE challenges with complex morphologies and material laws are validated through numerical experiments, including 1) hyperelastic particle-reinforced rubber composite with Mullins effect; 2) polycrystalline materials with rate-dependent crystal plasticity; 3) carbon fiber reinforced polymer (CFRP) composites with fiber anisotropic elasticity and matrix plasticity. In particular, we demonstrate a three-scale homogenization procedure of CFRP system by concatenating the microscale and mesoscale material networks. The complete learning and extrapolation procedures of DMN establish a reliable data-driven framework for multiscale material modeling and design. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文扩展了Liu等人提出的深层材料网络(DMN)。 (2019)解决具有任意材料和几何非线性的一般3维(3D)问题。它发现了一种通过多层网络结构和机制构建块描述多尺度异质材料的新方法。关于脱机培训和在线外推阶段,将详细讨论DMN的数据驱动框架。基于界面平衡条件和运动学约束,导出了具有小应变和有限应变公式的具有两层结构的3D结构块的解析解。通过在代表体积元素(RVE)上通过直接数值模拟生成的线性弹性数据,可以使用随机梯度下降和高级模型压缩算法在脱机阶段有效地训练网络。通过数值实验验证了DMN解决复杂形态和材料定律长期存在的3D RVE挑战的效率和准确性,包括1)具有Mullins效应的超弹性颗粒增强橡胶复合材料; 2)具有速率依赖性晶体可塑性的多晶材料; 3)具有纤维各向异性弹性和基体可塑性的碳纤维增强聚合物(CFRP)复合材料。特别是,我们通过将微观和中尺度材料网络连接起来,展示了CFRP系统的三尺度均质化程序。 DMN的完整学习和外推程序为多尺度材料建模和设计建立了可靠的数据驱动框架。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号