首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Incorporating grain-level residual stresses and validating a crystal plasticity model of a two-phase Ti-6Al-4V alloy produced via additive manufacturing
【24h】

Incorporating grain-level residual stresses and validating a crystal plasticity model of a two-phase Ti-6Al-4V alloy produced via additive manufacturing

机译:结合晶粒水平残余应力并验证通过增材制造生产的两相Ti-6Al-4V合金的晶体塑性模型

获取原文
获取原文并翻译 | 示例
       

摘要

Titanium alloys, produced via additive manufacturing techniques, offer tremendous benefits over conventional manufacturing processes. However, there is inherent uncertainty associated with their properties, often stemming from the variability in the manufacturing process itself along with the presence of residual stresses in the material, which prevents their use as critical components. This work investigates Ti-6Al-4V produced via selective laser melting by carrying out crystal plasticity finite element (CPFE) simulations and high-resolution digital image correlation (HR-DIC) on samples subject to cyclic loading. This is preceded by detailed material characterization using electron backscatter diffraction, back scattered electron imaging and transmission electron microscopy, whose results are utilized to inform the CPFE model. A method to incorporate the effect of grain-level residual stresses via geometrically necessary dislocations is developed and implemented within the CPFE framework. Using this approach, grain level information about residual stresses obtained spatially over the region of interest, directly from the experimental material characterization, is utilized as an input to the model. Simulation results match well with HR-DIC and indicate that prior beta boundaries play an important role in strain localization. In addition, possible sites for damage nucleation are identified, which correspond to regions of high plastic strain accumulation. (C) 2018 Elsevier Ltd. All rights reserved.
机译:通过增材制造技术生产的钛合金比传统的制造工艺具有巨大的优势。但是,它们的性能存在固有的不确定性,通常是由于制造过程本身的可变性以及材料中存在残余应力而导致的,因此无法将其用作关键组件。这项工作通过对承受周期性载荷的样品进行晶体可塑性有限元(CPFE)模拟和高分辨率数字图像相关性(HR-DIC),研究了通过选择性激光熔化产生的Ti-6Al-4V。在此之前,先使用电子反向散射衍射,反向散射电子成像和透射电子显微镜对材料进行详细表征,然后将其结果用于告知CPFE模型。在CPFE框架内开发并实现了一种通过几何上必要的位错合并晶粒级残余应力影响的方法。使用这种方法,可以直接从实验材料的表征中获得关于在感兴趣区域上在空间上获得的残余应力的晶粒度信息,作为模型的输入。仿真结果与HR-DIC很好地匹配,表明先前的β边界在应变定位中起着重要作用。另外,识别出可能的损伤成核位置,其对应于高塑性应变累积的区域。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号