首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals
【24h】

Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals

机译:NiAl单晶纳米压痕弹出行为的压痕施密特因子和取向依赖性

获取原文
获取原文并翻译 | 示例
       

摘要

Instrumented nanoindentation techniques have been widely used to characterize the small-scale mechanical behavior of materials. The elastic-plastic transition during nanoindentation is often indicated by a sudden displacement burst (pop-in) in the measured load-displacement curve. In defect-free single crystals, the pop-in is believed to be the result of homogeneous dislocation nucleation because the maximum shear stress corresponding to the pop-in load approaches the theoretical strength of the materials and because the statistical distribution of pop-in stresses is consistent with what is expected for a thermally activated process of homogeneous dislocation nucleation. This paper investigates whether this process is affected by crystallography and stress components other than the resolved shear stress. A Stroh formalism coupled with the two-dimensional Fourier transformation is used to derive the analytical stress fields in elastically anisotropic solids under Hertzian contact, which allows the determination of an indentation Schmid factor, namely, the ratio of maximum resolved shear stress to the maximum contact pressure. Nanoindentation tests were conducted on B2-structured NiAl single crystals with different surface normal directions. This material was chosen because it deforms at room temperature by {1 1 0}<00 1 > slip and thus avoids the complexity of partial dislocation nucleation. Good agreement is obtained between the experimental data and the theoretically predicted orientation dependence of pop-in loads based on the indentation Schmid factor. Pop-in load is lowest for indentation directions close to < 1 1 1 > and highest for those close to <0 0 1 >. In nanoindentation, since the stress component normal to the slip plane is typically comparable in magnitude to the resolved shear stress, we find that the pressure sensitivity of homogeneous dislocation nucleation cannot be determined from pop-in tests. Our statistical measurements generally confirm the thermal activation model of homogeneous dislocation nucleation. That is, the extracted dependence of activation energy on resolved shear stress is almost the same for all the indentation directions considered in this study, except for those close to <0 0 1 >. Because very high pop-in loads are measured for orientations close to <0 01>, which implies a large contact area at pop-in, there is a higher probability of activating pre-existing dislocations in these orientations, which may explain the discrepancy near <0 0 1 >.
机译:仪器化的纳米压痕技术已被广泛用于表征材料的小规模机械行为。纳米压痕过程中的弹塑性转变通常由测得的载荷-位移曲线中的突然位移爆发(弹入)表示。在无缺陷的单晶中,弹出是由于位错均匀成核的结果,因为对应于弹出载荷的最大剪切应力接近材料的理论强度,并且因为弹出应力的统计分布与对均匀位错成核的热活化过程的预期一致。本文研究此过程是否受晶体学和应力分量的影响,而不是解析剪切应力的影响。将Stroh形式主义与二维傅里叶变换相结合,得出在Hertzian接触下弹性各向异性固体中的解析应力场,这可以确定压痕Schmid因子,即最大解析剪切应力与最大接触的比值。压力。在具有不同表面法线方向的B2结构NiAl单晶上进行了纳米压痕测试。选择该材料是因为它在室温下会因{1 1 0} <00 1>滑移而变形,因此避免了部分位错成核的复杂性。实验数据与基于压入施密特因子的弹入载荷的理论预测取向依赖性之间取得了良好的一致性。压入方向在接近<1 1 1>的压入方向上最低,而在接近<0 0 1>的压入方向上最高。在纳米压痕中,由于垂直于滑移面的应力分量通常在大小上可与解析剪切应力相媲美,因此我们发现无法通过弹跳试验确定均匀位错形核的压力敏感性。我们的统计测量结果通常证实了均匀位错成核的热活化模型。也就是说,对于本研究中考虑的所有压痕方向,活化能对解析剪切应力的依赖关系几乎相同,除了接近<0 0 1>的那些方向。由于在接近<0 01>的方向上测量到非常高的弹出负载,这意味着弹出时接触面积较大,因此激活这些方向上预先存在的位错的可能性更高,这可能解释了附近的差异<0 0 1>。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2011年第6期|p.1147-1162|共16页
  • 作者单位

    Department of Materials Science and Engineering, University of Tennessee, Knoxville. TN 37996, USA;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville. TN 37996, USA,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Department of Materials Science and Engineering, University of Tennessee, Knoxville. TN 37996, USA,Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nanoindentation pop-in; dislocation nucleation; crystal anisotropy; thermally activated process;

    机译:纳米压痕弹出;位错成核;晶体各向异性;热活化过程;
  • 入库时间 2022-08-18 03:00:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号