首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Theory of sorption hysteresis in nanoporous solids: Part II Molecular condensation
【24h】

Theory of sorption hysteresis in nanoporous solids: Part II Molecular condensation

机译:纳米多孔固体中的吸附滞后理论:第二部分分子缩合

获取原文
获取原文并翻译 | 示例
       

摘要

Motivated by the puzzle of sorption hysteresis in Portland cement concrete or cement paste, we develop in Part 11 of this study a general theory of vapor sorption and desorption from nanoporous solids, which attributes hysteresis to hindered molecular condensation with attractive lateral interactions. The classical mean-field theory of van der Waals is applied to predict the dependence of hysteresis on temperature and pore size, using the regular solution model and gradient energy of Cahn and Hilliard. A simple "hierarchical wetting" model for thin nanopores is developed to describe the case of strong wetting by the first monolayer, foilowed by condensation of nanodroplets and nanobubbles in the bulk. The model predicts a larger hysteresis critical temperature and enhanced hysteresis for molecular condensation across nanopores at high vapor pressure than within monolayers at low vapor pressure. For heterogeneous pores, the theory predicts sorption/desorption sequences similar to those seen in molecular dynamics simulations, where the interfacial energy (or gradient penalty) at nanopore junctions acts as a free energy barrier for snap-through instabilities. The model helps to quantitatively understand recent experimental data for concrete or cement paste wetting and drying cycles and suggests new experiments at different temperatures and humidity sweep rates.
机译:受波特兰水泥混凝土或水泥浆中吸附滞后之谜的影响,我们在本研究的第11部分中开发了一种从纳米孔固体中吸附和解吸蒸气的一般理论,该理论将滞后归因于具有吸引力的横向相互作用的阻碍分子缩合。范德华(Van der Waals)的经典平均场理论被用于使用常规溶液模型和Cahn和Hilliard的梯度能量来预测磁滞对温度和孔径的依赖性。建立了一个用于薄纳米孔的简单“分层润湿”模型,以描述第一个单层的强润湿情况,该现象是由于纳米液滴和纳米气泡在主体中的凝结所致。该模型预测,与在低蒸汽压下的单分子层内相比,在高蒸汽压下的纳米孔间的分子缩合具有更大的滞后临界温度和更高的滞后性。对于异质孔,该理论预测的吸附/解吸序列类似于分子动力学模拟中的吸附/解吸序列,其中纳米孔连接处的界面能(或梯度罚分)充当快速捕捉不稳定性的自由能屏障。该模型有助于定量了解混凝土或水泥浆润湿和干燥周期的最新实验数据,并建议在不同温度和湿度扫描速率下的新实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号