...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material
【24h】

Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material

机译:基于分子动力学的结晶材料中裂纹附近变形机理的研究和表征

获取原文
获取原文并翻译 | 示例

摘要

Modeling crack propagation in crystalline materials is a challenging enterprise due to complexities induced by the interaction of the crack with various deformation mechanisms such as dislocation, micro twin, stacking faults etc.. As a first step toward the development of physics-based models of deformation in the presence of a crack, this paper proposes a comprehensive approach based on molecular dynamics simulations of a crystalline material with an embedded crack. The MD-based framework invokes a sequence of four tasks to accomplish the overall goal, viz. (i) MD simulation, (ii) characterization of atomic-level crack and deformation mechanisms, (iii) quantification of atomic-level deformation mechanisms and crack, and (iv) response analysis. Effective characterization methods like CNA, DXA and deformation gradient analysis followed by quantification are able to delineate the crack length/opening, dislocation structure and microtwins at a high resolution. Interactions of the crack with the dislocation networks and microtwins under mode I loading conditions are investigated for different lattice orientations. Crystal orientation has significant effect on the mechanisms activation and evolution. An important study is made through partitioning of the total energy into recoverable elastic energy, defect energy and inelastic dissipation, and correlating them with deformation characteristics such as dislocation density and twin volume fraction. Finally, a simple mechanistic model of deformation is developed, which associates dislocation density evolution with the stress-strain response in a crystalline material in the presence of a crack. Results show good quantitative agreement of material softening and hardening behavior with direct MD simulation results. The model can be further used to estimate the range of strain-rates that may be applied for physically meaningful MD simulations.
机译:由于裂纹与各种变形机制(例如位错,微孪晶,堆垛层错等)的相互作用所引起的复杂性,对晶体材料中的裂纹扩展进行建模是一项具有挑战性的工作。作为开发基于物理的变形模型的第一步在存在裂纹的情况下,本文提出了一种基于分子动力学模拟的,具有嵌入裂纹的晶体材料的综合方法。基于MD的框架调用一系列四个任务来完成总体目标,即。 (i)MD模拟,(ii)原子级裂纹和变形机理的表征,(iii)原子级变形机理和裂纹的量化,以及(iv)响应分析。有效的表征方法(例如CNA,DXA和变形梯度分析,然后进行量化)能够以高分辨率描绘出裂纹长度/开口,位错结构和微孪晶。对于不同的晶格取向,研究了模式I加载条件下裂纹与位错网络和微孪晶的相互作用。晶体取向对激活和演化的机制具有重要影响。通过将总能量分配为可恢复的弹性能,缺陷能和非弹性耗散,并将它们与位错密度和孪晶体积分数等变形特征相关联,进行了重要的研究。最后,建立了一个简单的变形力学模型,该模型将位错密度演变与存在裂纹的晶体材料中的应力应变响应联系起来。结果表明,材料的软化和硬化行为与直接的MD模拟结果具有良好的定量一致性。该模型可以进一步用于估计可应用于物理上有意义的MD模拟的应变率范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号