首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Spatiotemporal properties of Sub-Rayleigh and supershear rupture velocity fields: Theory and experiments
【24h】

Spatiotemporal properties of Sub-Rayleigh and supershear rupture velocity fields: Theory and experiments

机译:次瑞利和超剪切破裂速度场的时空特性:理论与实验

获取原文
获取原文并翻译 | 示例
           

摘要

Fundamental spatiotemporal field properties and particle velocity waveform signatures of sub-Rayleigh and supershear ruptures were experimentally investigated through a series of laboratory earthquake experiments. We appeal to dynamic rupture theory to extract and highlight previously unnoticed aspects and results, which are of direct relevance to our new experiments. Kinematic relationships derived from both singular and non-singular solutions are applied to analyze and interpret various features observed in these experiments. A strong correspondence is demonstrated between particle velocity records obtained in lab experiments and synthetic particle velocity waveform profiles derived from theory. Predicted temporal profiles, sense of particle motion, and amplitude decay properties of sub-Rayleigh and supershear particle velocity waveforms are experimentally verified. In a particular set of supershear rupture experiments, the fault-normal (FN) and fault-parallel (FP) velocity waveforms were simultaneously recorded at fixed, off-fault field points as a shear Mach front swept these locations. Particle velocity records collected over a broad range of stable supershear rupture speeds validate the predicted scaling relationship δu_1~s/δu_2~s = ((V_r~2/C_s~2) -1)~(1/2) = β_s, between the FP (δu_1~s) and the FN (δu_2~s) velocity jumps propagated by a shear Mach front Additional experimental findings include detailed rupture speed measurements of sub-Rayleigh and supershear ruptures and the observation of a supershear daughter crack with vanishing shear Mach front Previously unappreciated scaling relations between particle velocity field components, attributed to dilatational and shear waves, are also developed and experimentally verified. In particular, the FP velocity jump δu_1~s(x_1, x_2) propagated by the shear Mach front, and the sliding speed δu_1(x_1, 0~+), measured at a field point positioned extremely close to the frictional fault plane, are shown to obey a speed-dependent scaling relationship given by δu_1~s/δu_1~+ = 1 - 2(C_s~2/V_r~2), which was gleaned from a non-singular, steady state velocity field solution.
机译:通过一系列实验室地震实验,对亚瑞利破裂和超剪切破裂的基本时空场特性和粒子速度波形特征进行了研究。我们呼吁动态破裂理论来提取和突出以前未注意到的方面和结果,这些方面和结果与我们的新实验直接相关。从奇异解和非奇异解导出的运动学关系被用于分析和解释在这些实验中观察到的各种特征。实验室实验中获得的粒子速度记录与理论推导的合成粒子速度波形图之间显示出强烈的对应关系。实验验证了预测的时间剖面,粒子运动的感觉以及亚瑞利和超剪切粒子速度波形的幅度衰减特性。在一组特定的超剪切破裂实验中,当剪切马赫前波扫过这些位置时,在固定的断层场点同时记录断层法向(FN)和断层平行(FP)速度波形。在广泛的稳定超剪切破裂速度范围内收集的粒子速度记录验证了预测的比例关系δu_1〜s /δu_2〜s =((V_r〜2 / C_s〜2)-1)〜(1/2)=β_s剪切马赫锋传播的FP(δu_1〜s)和FN(δu_2〜s)速度跳跃其他实验发现包括详细的亚瑞利破裂和超剪切破裂的破裂速度测量以及观察到剪切马赫消失的超剪切子裂纹以前,由于膨胀波和切变波,粒子速度场分量之间的比例关系还没有得到发展,并进行了实验验证。特别是,由剪切马赫锋传播的FP速度跳变δu_1〜s(x_1,x_2)和在非常靠近摩擦断层的场点处测得的滑动速度δu_1(x_1,0〜+)是表示服从δu_1〜s /δu_1〜+ = 1-2(C_s〜2 / V_r〜2)给出的速度相关的比例关系,该关系是从非奇异的稳态速度场解中得出的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号