首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Multi-scale defect interactions in high-rate failure of brittle materials, Part Ⅱ: Application to design of protection materials
【24h】

Multi-scale defect interactions in high-rate failure of brittle materials, Part Ⅱ: Application to design of protection materials

机译:脆性材料高倍率破坏中的多尺度缺陷相互作用,第二部分:保护材料设计中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Micromechanics based damage models, such as the model presented in Part I of this 2 part series (Tonge and Ramesh, 2015), have the potential to suggest promising directions for materials design. However, to reach their full potential these models must demonstrate that they capture the relevant physical processes. In this work, we apply the multiscale material model described in Tonge and Ramesh (2015) to ballistic impacts on the advanced ceramic boron carbide and suggest possible directions for improving the performance of boron carbide under impact conditions. We simulate both dynamic uniaxial compression and simplified ballistic loading geometries to demonstrate that the material model captures the relevant physics in these problems and to interrogate the sensitivity of the simulation results to some of the model input parameters. Under dynamic compression, we show that the simulated peak strength is sensitive to the maximum crack growth velocity and the flaw distribution, while the stress collapse portion of the test is partially influenced by the granular flow behavior of the fully damaged material. From simulations of simplified ballistic impact, we suggest that the total amount of granular flow (a possible performance metric) can be reduced by either a larger granular flow slope (more angular fragments) or a larger granular flow timescale (larger fragments). We then discuss the implications for materials design.
机译:基于微力学的损伤模型,例如本两部分系列的第I部分(Tonge和Ramesh,2015年)中介绍的模型,有可能为材料设计提出有希望的方向。但是,为了充分发挥其潜力,这些模型必须证明它们捕获了相关的物理过程。在这项工作中,我们将Tonge和Ramesh(2015)中描述的多尺度材料模型应用于对高级陶瓷碳化硼的弹道冲击,并提出了在冲击条件下改善碳化硼性能的可能方向。我们同时模拟了动态单轴压缩和简化的弹道加载几何形状,以证明材料模型捕获了这些问题中的相关物理原理,并询问了模拟结果对某些模型输入参数的敏感性。在动态压缩下,我们显示了模拟的峰值强度对最大裂纹扩展速度和裂纹分布敏感,而测试的应力崩溃部分则受到完全破坏的材料的颗粒流动行为的部分影响。通过简化弹道撞击的模拟,我们建议可以通过较大的颗粒流斜率(更多的角碎片)或较大的颗粒流时间尺度(较大的碎片)来减少颗粒流的总量(可能的性能指标)。然后,我们讨论材料设计的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号