首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Micromechanical model of lung parenchyma hyperelasticity
【24h】

Micromechanical model of lung parenchyma hyperelasticity

机译:肺实质超弹性的微力学模型

获取原文
获取原文并翻译 | 示例
       

摘要

Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungsin-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic volumetric expansion, but also for three other anisotropic loading conditions for different levels of tissue porosity, while displaying superior computational efficiency and stability in estimating coarse-scale response when compared to direct numerical simulations of RVEs. Further, we find that the most influential microstructural parameters on the response of the micromechanical model are the reference porosity and the alveolar wall elasticity. We also show that the model can reproduce uniaxial experimental tests on lung tissue samples, and estimate the Poisson ratio to be 0.22. We envision that our model will enable predictive and efficient whole-organ simulations useful to study the normal and diseased lung.
机译:力学在呼吸生理中起着关键作用,因为肺组织会循环变形以将空气引入和排出肺,这是呼吸所必需的终生过程。由于其在临床上的相关性,迄今为止对肺实质变形区域机制的研究已引起广泛关注,因为肺组织中的局部过度拉伸和应力集中目前与病理状况(如机械通气治疗期间的肺损伤)有关。这种对肺部生理的机械方法促使本构模型的发展,以更好地了解压力与肺部变形之间的关系。尽管迄今为止提出的材料模型在整个肺部模拟的开发中是关键的,但是它们要么不直接将肺泡组织的微观结构特性与粗尺度行为联系在一起,要么当它们基于真实的肺泡几何形状时需要大量的计算工作。此外,迄今为止提出的大多数模型还没有针对各向异性的变形状态进行彻底验证,而各向异性变形状态通常在正常的肺部-活体内被发现。在这项工作中,我们使用有限变形均质化的框架开发了一种新的肺实质超弹性微力学模型。为此,我们考虑具有不可压缩的新胡克结构元素的四十二面体晶胞,这些新构成的单元构成了负责弹性反应的肺泡壁组织,并推导了其有效粗尺度行为的表达式,该行为直接取决于肺泡壁的弹性,参考孔隙率和其他两个几何系数。为了验证所提出的模型,我们用微米尺寸模拟了肺实质中十二个代表性体积元素(RVE)的非线性弹性响应,其几何形状是从小鼠肺部的微米级计算机断层摄影术重建中获得的。我们表明,所提出的微力学模型不仅可以捕获各向同性的体积膨胀的RVEs响应,而且还可以捕获不同组织孔隙度水平的其他三个各向异性加载条件的RVEs响应,同时与估算相比,在估算粗尺度响应时显示出了优异的计算效率和稳定性。 RVE的直接数值模拟。此外,我们发现,对微机械模型响应最有影响的微结构参数是参考孔隙度和牙槽壁弹性。我们还显示该模型可以在肺组织样本上重现单轴实验测试,并估计泊松比为0.22。我们设想我们的模型将使预测和有效的全器官模拟对研究正常和患病的肺有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号