首页> 外文期刊>Journal of the Franklin Institute >Design of Optimal PID Control with a Sensitivity Function for Resonance Phenomenon-involved Second-order Plus Dead-time System
【24h】

Design of Optimal PID Control with a Sensitivity Function for Resonance Phenomenon-involved Second-order Plus Dead-time System

机译:具有谐振现象的灵敏度函数的最佳PID控制设计涉及二阶加上死区时间系统的灵敏度

获取原文
获取原文并翻译 | 示例
       

摘要

The present study discusses an optimal design method of a proportional integral derivative (PID) control system for a continuous-time second-order plus dead-time system (SOPDT) that includes an under-damping system. The proposed PID control system is designed to minimize the performance index defined as the tracking performance for the set-point or the regulation performance for the disturbance, where the assigned stability margin is also achieved in order to attain robust stability for the modeling error. Because of the relationship between tracking performance and robust stability, the PID parameters are decided such that the tracking performance is optimized subject to the user-specified stability margin. In the proposed design method, in order to obtain the most general optimal PID possible parameters for controlled plants, we discuss a design method based on a normalized plant model. As a result, the PID parameters are seamlessly optimized between over-damping, critical-damping, and under-damping systems. The effectiveness of the proposed method is demonstrated through numerical examples. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
机译:本研究讨论了用于连续时间二阶加上死区时间系统(SOPDT)的比例积分衍生(PID)控制系统的最佳设计方法,其包括欠阻尼系统。所提出的PID控制系统旨在使定义为设定点的跟踪性能或干扰的调节性能的性能指数,其中还实现了分配的稳定性余量,以便对建模误差达到鲁棒稳定性。由于跟踪性能与鲁棒稳定性之间的关系,因此确定PID参数,使得跟踪性能受到用户指定的稳定性余量的优化。在所提出的设计方法中,为了获得受控工厂的最普遍的最佳PID可能参数,我们讨论了基于标准化植物模型的设计方法。结果,PID参数在过度阻尼,临界阻尼和阻尼系统的下扰系统之间无缝优化。通过数值例示表所提出的方法的有效性。 (c)2020富兰克林学院。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《Journal of the Franklin Institute》 |2020年第7期|4187-4211|共25页
  • 作者单位

    Univ Hyogo Grad Sch Engn Dept Mech Engn 2167 Shosha Himeji Hyogo 6712280 Japan;

    Univ Hyogo Grad Sch Engn Dept Mech Engn 2167 Shosha Himeji Hyogo 6712280 Japan;

    Univ Autonoma Barcelona Dept Telecommun & Syst Engn Edif Q Campus UAB Barcelona 08193 Spain;

    Univ Hyogo Grad Sch Engn Dept Mech Engn 2167 Shosha Himeji Hyogo 6712280 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 21:04:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号