首页> 外文期刊>Journal of the American Chemical Society >Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network
【24h】

Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network

机译:具有自动反应网络的锂乙烯二碳酸酯形成机制的数据驱动预测

获取原文
获取原文并翻译 | 示例
       

摘要

Interfacial reactions are notoriously difficult to characterize, and robust prediction of the chemical evolution and associated functionality of the resulting surface film is one of the grand challenges of materials chemistry. The solid-electrolyte interphase (SEI), critical to Li-ion batteries (LIBs), exemplifies such a surface film, and despite decades of work, considerable controversy remains regarding the major components of the SEI as well as their formation mechanisms. Here we use a reaction network to investigate whether lithium ethylene monocarbonate (LEMC) or lithium ethylene dicarbonate (LEDC) is the major organic component of the LIB SEI. Our data-driven, automated methodology is based on a systematic generation of relevant species using a general fragmentation/recombination procedure which provides the basis for a vast thermodynamic reaction landscape, calculated with density functional theory. The shortest pathfinding algorithms are employed to explore the reaction landscape and obtain previously proposed formation mechanisms of LEMC as well as several new reaction pathways and intermediates. For example, we identify two novel LEMC formation mechanisms: one which involves LiH generation and another that involves breaking the (CH_2)O-C(=O)OLi bond in LEDC. Most importantly, we find that all identified paths, which are also kinetically favorable under the explored conditions, require water as a reactant. This condition severely limits the amount of LEMC that can form, as compared with LEDC, a conclusion that has direct impact on the SEI formation in Li-ion energy storage systems. Finally, the data-driven framework presented here is generally applicable to any electrochemical system and expected to improve our understanding of surface passivation.
机译:界面反应难以表征,并且对所得表面膜的化学进化和相关功能的鲁棒预测是材料化学的大挑战之一。对于锂离子电池(Libs)至关重要的固体电解质间(SEI),举例说明了这种表面膜,尽管工作数十年,但是对于SEI的主要成分以及它们的形成机制,仍然存在相当大的争议。在这里,我们使用反应网络来研究乙烯二碳酸锂(LEMC)或乙烯碳酸锂(LEDC)是LIB SEI的主要有机组分。我们的数据驱动自动化方法基于使用一般碎片/重组程序的相关物种的系统产生,该方法为具有密度函数理论计算的巨大热力学反应景观。采用最短的途径算法来探讨反应景观,并获得先前提出的LEMC的形成机制以及几种新的反应途径和中间体。例如,我们鉴定了两种新型lemc形成机制:涉及LIH的一代,另一个涉及在LEDC中打破(CH_2)O-C(= O)OLI键。最重要的是,我们发现所有已识别的路径,也是在探索条件下的动力学,需要水作为反应物。与LEDC相比,这种情况严重限制了可以形成的lemc的量,该结论是对锂离子能量储存系统中的SEI形成产生直接影响的结论。最后,这里呈现的数据驱动框架通常适用于任何电化学系统,并期望改善我们对表面钝化的理解。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第33期|13245-13258|共14页
  • 作者单位

    Department of Chemistry University of California Berkeley California 94720 United States Materials Science Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Materials Science Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States Department of Materials Science and Engineering University of California Berkeley California 94720 United States;

    Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Materials Science Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States Department of Materials Science and Engineering University of California Berkeley California 94720 United States;

    Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Department of Materials Science and Engineering University of California Berkeley California 94720 United States Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:03:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号