首页> 外文期刊>Journal of the American Chemical Society >Confined Chemical Transitions for Direct Extraction of Conductive Cellulose Nanofibers with Graphitized Carbon Shell at Low Temperature and Pressure
【24h】

Confined Chemical Transitions for Direct Extraction of Conductive Cellulose Nanofibers with Graphitized Carbon Shell at Low Temperature and Pressure

机译:狭窄的化学转变,用于在低温和压力下将导电纤维素纳米纤维的直接提取

获取原文
获取原文并翻译 | 示例
       

摘要

Cellulose is the most abundant renewable natural polymer on earth, but it does not conduct electricity, which limits its application expansion. The existing methods of making cellulose conductive are combined with another conductive material or high-temperature/high-pressure carbonization of the cellulose itself, while in the traditional method of sulfuric acid hydrolysis to extract nanocellulose, it is usually believed that a too high temperature will destroy cellulose and lead to experimental failure. Now, based on a new research perspective, by controlling the continuous reaction process and isolating oxygen, we directly extracted intrinsically conductive cellulose nanofiber (CNF) from biomass, where the confined range molecular chains of CNF were converted to highly graphitized carbon at only 90°C and atmospheric pressure, while large-scale twisted graphene films can be synthesized bottom-up from CNFene suspensions, called CNFene (cellulose nanofiber-graphene). The conductivity of the best CNFene can be as high as 1.099 S/cm, and the generality of this synthetic route has been verified from multiple biomass cellulose sources. By comparing the conventional high-pressure hydrothermal and high-temperature pyrolysis methods, this study avoided the dangerous high-pressure environment and saved 86.16% in energy. These findings break through the conventional notion that nanocellulose cannot conduct electricity by itself and are expected to extend the application potential of pure nanocellulose to energy storage, catalysis, and sensing.
机译:纤维素是地球上最丰富的可再生天然聚合物,但它不会导电,这限制了其应用扩张。将纤维素导电的现有方法与纤维素本身的另一种导电材料或高温/高压碳化结合,而在传统的硫酸水解方法中以提取纳米纤维素,通常认为过高的温度会破坏纤维素并导致实验失败。现在,根据一种新的研究观点,通过控制连续反应过程和分离氧,我们直接从生物质中提取本质上导电纤维素纳米纤维(CNF),其中CNF的限制范围分子链仅在90°处转化为高度石墨碳的碳。 C和大气压,而大规模扭曲的石墨烯薄膜可以从CNFENE悬浮液合成自下而上,称为CNFENE(纤维素纳米纤维 - 石墨烯)。最佳CNFENE的电导率可以高达1.099 s / cm,并且已经从多种生物量纤维素源验证了该合成路线的一般性。通过比较常规的高压水热和高温热解方法,本研究避免了危险的高压环境,并节省了86.16%。这些发现突破了纳米纤维素本身不能传导电力的传统观念,并且预期将纯纳米纤维素的应用潜力扩展到能量储存,催化和感测。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第30期|11620-11630|共11页
  • 作者单位

    National Engineering Lab for Textile Fiber Materials & Processing Technology College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China;

    National Engineering Lab for Textile Fiber Materials & Processing Technology College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China;

    National Engineering Lab for Textile Fiber Materials & Processing Technology College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China;

    National Engineering Lab for Textile Fiber Materials & Processing Technology College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China;

    National Engineering Lab for Textile Fiber Materials & Processing Technology College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China;

    National Engineering Lab for Textile Fiber Materials & Processing Technology College of Textile Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:03:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号