...
首页> 外文期刊>Journal of the American Chemical Society >Atomically Dispersed Pt-N_3C_1 Sites Enabling Efficient and Selective Electrocatalytic C-C Bond Cleavage in Lignin Models under Ambient Conditions
【24h】

Atomically Dispersed Pt-N_3C_1 Sites Enabling Efficient and Selective Electrocatalytic C-C Bond Cleavage in Lignin Models under Ambient Conditions

机译:原子上分散的Pt-N_3C_1位点,在环境条件下,在木质素模型中实现有效和选择性电催化C-C键粘合

获取原文
获取原文并翻译 | 示例
           

摘要

Selective cleavage of C-C linkages is the key and a challenge for lignin degradation to harvest value-added aromatic compounds. To this end, electrocatalytic oxidation presents a promising technique by virtue of mild reaction conditions and strong sustainability. However, the existing electrocatalysts (traditional bulk metal and metal oxides) for C-C bond oxidative cleavage suffer from poor selectivity and low product yields. We show for the first time that atomically dispersed Pt-N_3C_1 sites planted on nitrogen-doped carbon nanotubes (Pt_1/N-CNTs), constructed via a stepwise polymerization-carbonization-electrostatic adsorption strategy, are highly active and selective toward C_α-C_β bond cleavage in β-O-4 model compounds under ambient conditions. Pt_1/N-CNTs exhibits 99% substrate conversion with 81% yield of benzaldehyde, which is exceptional and unprecedented compared with previously reported electrocatalysts. Moreover, Pt_1/N-CNTs using only 0.41 wt % Pt achieved a much higher benzaldehyde yield than those of the state-of-the-art bulk Pt electrode (100 wt % Pt) and commercial Pt/C catalyst (20 wt % Pt). Systematic experimental investigation together with density functional theory (DFT) calculation suggests that the superior performance of Pt_1/N-CNTs arises from the atomically dispersed Pt-N_3C_1 sites facilitating the formation of a key C_β radical intermediate, further inducing a radical/radical cross-coupling path to break the C_α-C_β bond. This work opens up opportunities in lignin valorization via a green and sustainable electrochemical route with ultralow noble metal usage.
机译:C-C键的选择性切割是木质素劣化以收获增值芳族化合物的关键和挑战。为此,通过温和的反应条件和强大的可持续性,电催化氧化具有有希望的技术。然而,对于C-C键氧化裂解的现有电催化剂(传统的散装金属和金属氧化物)患有较差的选择性和低产物产率。我们首次展示通过阶梯式聚合 - 碳化 - 静电吸附策略构建的氮掺杂碳纳米管(Pt_1 / N-CNT)上种植的原子分散的Pt-N_3C_1位点,对C_α-C_β键具有高活性和选择性在环境条件下在β-O-4模型化合物中切割。 PT_1 / N-CNTS表现出99%的底物转化率,苯甲醛的81%产率为81%,与先前报告的电催化剂相比,其特殊和前所未有的。此外,使用仅0.41wt%PT的PT_1 / N-CNT比现有技术散装PT电极(100wt%Pt)和商业Pt / C催化剂(20wt%PT )。与密度泛函理论(DFT)计算的系统实验研究表明,PT_1 / N-CNT的优异性能来自原子分散的PT-N_3C_1位点,促进了键C_β自由基中间体的形成,进一步诱导自由基/自由基交叉 - 用于破坏C_α-C_β键的耦合路径。这项工作通过绿色和可持续的电化学途径开辟了木质素贪婪的机会,具有超级贵金属用途。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第25期|9429-9439|共11页
  • 作者单位

    Department of Chemistry Tsinghua University Beijing 100084 China;

    State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China;

    Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 China;

    Department of Chemistry Tsinghua University Beijing 100084 China;

    Department of Chemistry Tsinghua University Beijing 100084 China;

    Department of Chemistry Tsinghua University Beijing 100084 China;

    Department of Chemistry Tsinghua University Beijing 100084 China;

    Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China;

    Department of Chemistry Tsinghua University Beijing 100084 China;

    Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China;

    Department of Chemistry Tsinghua University Beijing 100084 China;

    Department of Chemistry Tsinghua University Beijing 100084 China;

    Department of Chemistry Tsinghua University Beijing 100084 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号