...
首页> 外文期刊>Journal of the American Chemical Society >Faster Surface Ligation Reactions Improve Immobilized Enzyme Structure and Activity
【24h】

Faster Surface Ligation Reactions Improve Immobilized Enzyme Structure and Activity

机译:更快的表面连接反应改善固定化酶结构和活性

获取原文
获取原文并翻译 | 示例

摘要

During integration into materials, the inactivation of enzymes as a result of their interaction with nanometer size denaturing "hotspots" on surfaces represents a critical challenge. This challenge, which has received far less attention than improving the long-term stability of enzymes, may be overcome by limiting the exploration of surfaces by enzymes. One way this may be accomplished is through increasing the rate constant of the surface ligation reaction and thus the probability of immobilization with reactive surface sites (i.e., ligation efficiency). Here, the connection between ligation reaction efficiency and the retention of enzyme structure and activity was investigated by leveraging the extremely fast reaction of strained trans-cyclooctene (sTCOs) and tetrazines (Tet). Remarkably, upon immobilization via Tet-sTCO chemistry, carbonic anhydrase (CA) retained 77% of its solution-phase activity, while immobilization via less efficient reaction chemistries, such as thiol-maleimide and azide-dibenzocyclooctyne, led to activity retention of only 46% and 27%, respectively. Dynamic single-molecule fluorescence tracking methods further revealed that longer surface search distances prior to immobilization (>0.5 μm) dramatically increased the probability of CA unfolding. Notably, the CA distance to immobilization was significantly reduced through the use of Tet-sTCO chemistry, which correlated with the increased retention of structure and activity of immobilized CA compared to the use of slower ligation chemistries. These findings provide an unprecedented insight into the role of ligation reaction efficiency in mediating the exploration of denaturing hotspots on surfaces by enzymes, which, in turn, may have major ramifications in the creation of functional biohybrid materials.
机译:在整合入材料,酶及其与纳米尺寸的变性“热点”上的表面相互作用的结果的失活表示一个关键挑战。这种挑战,已收到远不如关注比提高酶的长期稳定性,可通过酶限制表面的探索来克服。可以实现这一点的一种方法是通过提高表面的连接反应的速率常数并由此固定的具有反应性表面位点(即,连接效率)的概率。在这里,连接反应的效率和酶的结构的保持和活性之间的连接被通过利用应变反式环辛烯(sTCOs)和四嗪(TET)的极快的反应的影响。值得注意的是,在经由的Tet-STCO化学固定,碳酸酐酶(CA)保留了它的溶液相的活性的77%,而通过低效率的反应化学,如硫醇 - 马来酰亚胺和叠氮化物dibenzocyclooctyne固定化,导致只有46活性保持%和27%,分别。动态单分子荧光跟踪方法进一步揭示之前固定较长表面搜索距离(> 0.5微米)显着增加的CA展开的概率。值得注意的是,以固定的距离CA通过使用Tet-可STCO化学的,它与结构的增加的保留和固定化CA的活性相关相比,使用较慢的结扎化学物显著降低。这些发现提供了前所未有的洞察的连接反应效率在介导由酶,这反过来,可以具有在创建功能biohybrid材料主要后果变性在表面上的热点的探索中的作用。

著录项

  • 来源
    《Journal of the American Chemical Society 》 |2021年第18期| 7154-7163| 共10页
  • 作者单位

    Department of Chemical and Biological Engineering University of Colorado Boulder Colorado 80309 United States;

    Department of Biochemistry and Biophysics Oregon State University Corvallis Oregon 97331-7305 United States;

    Department of Biochemistry and Biophysics Oregon State University Corvallis Oregon 97331-7305 United States;

    Department of Chemical and Biological Engineering University of Colorado Boulder Colorado 80309 United States;

    Department of Chemical and Biological Engineering University of Colorado Boulder Colorado 80309 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号