...
首页> 外文期刊>Journal of the American Chemical Society >O-Heterocycle Synthesis via Intramolecular C-H Alkoxylation Catalyzed by Iron Acetylacetonate
【24h】

O-Heterocycle Synthesis via Intramolecular C-H Alkoxylation Catalyzed by Iron Acetylacetonate

机译:O-杂环通过铁乙酰丙酮催化催化的分子内C-H烷氧基化合成

获取原文
获取原文并翻译 | 示例

摘要

Intramolecular alkoxylation of C-H bonds can rapidly introduce structural and functional group complexities into seemingly simple or inert precursors. The transformation is particularly important due to the ubiquitous presence of tetrahydrofuran (THF) motifs as fundamental building blocks in a wide range of pharmaceuticals, agrochemicals, and natural products. Despite the various synthetic methodologies known for generating functionalized THFs, most show limited functional group tolerance and lack demonstration for the preparation of spiro or fused bi- and tricyclic ether units prevalent in molecules for pharmacological purposes. Herein we report an intramolecular C-H alkoxylation to furnish oxacycles from easily prepared α-diazo-β-ketoesters using commercially available iron acetylacetonate (Fe(acac)_2) as a catalyst. The reaction is proposed to proceed through the formation of a vinylic carboradical arising from N_2 extrusion, which mediates a proximal H-atom abstraction followed by a rapid C-O bond forming radical recombination step. The radical mechanism is probed using an isotopic labeling study (vinyl C-D incorporation), ring opening of a radical clock substrate, and Hammett analysis and is further corroborated by density functional theory (DFT) calculations. Heightened reactivity is observed for electron-rich C-H bonds (tertiary, ethereal), while greater catalyst loadings or elevated reaction temperatures are required to fully convert substrates with benzylic, secondary, and primary C-H bonds. The transformation is highly functional group tolerant and operates under mild reaction conditions to provide rapid access to complex structures such as spiro and fused bi-/tricyclic O-heterocydes from readily available precursors.
机译:C-H键的分子内烷氧基化可以迅速将结构和官能团复杂性引入看似简单或惰性前体。由于四氢呋喃(THF)基序作为各种药物,农用化学品和天然产品中的基本建筑块的普遍存在,转化尤为重要。尽管已知用于产生官能化THFS的各种合成方法,但大多数显示有限的官能团耐受性,并且缺乏制备药理学目的分子中普遍存在的螺旋或熔融的双环醚单元的普遍的示范。在此,我们报告了分子内C-H烷氧基化以使用市售铁乙酰丙酮(Fe(ACAC)_2)作为催化剂,从易于制备的α-二氮基-β-酮间酯提供氧化族烷氧基化。提出了反应,通过形成由N_2挤出产生的乙烯基碳酸糖,其介导近端H-原子抽象,然后是快速的C-O键形成自由基重组步骤。使用同位素标记研究(乙烯基C-D掺入),自由基时钟衬底的环开口和Hammett分析,并通过密度函数理论(DFT)计算进一步证实了自由基机制。对于电子富含电子的C-H键(第三,醚),观察到高度的反应性,而更大的催化剂载体或升高的反应温度需要用苄基,次级和初级C-H键完全转化衬底。转化是高官能团的耐受性,并在温和的反应条件下运行,以提供从容易获得的前体的螺旋和熔融的双/三环o-杂核等复杂结构的快速进入。

著录项

  • 来源
    《Journal of the American Chemical Society 》 |2021年第19期| 7480-7489| 共10页
  • 作者单位

    Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 United States;

    Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 United States;

    Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 United States;

    Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 United States;

    Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 United States;

    Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 United States;

    Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号