...
首页> 外文期刊>Journal of the American Chemical Society >Distance Dependence of Foerster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length
【24h】

Distance Dependence of Foerster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length

机译:通过控制有机间隔率2D钙钛矿量子孔中Foerster共振能量传递速率的距离依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional (2D) semiconductors are attractive candidates for a variety of optoelectronic applications owing to the unique electronic properties that arise from quantum confinement along a single dimension. Incorporating nonradiative mechanisms that enable directed migration of bound charge carriers, such as Foerster resonance energy transfer (FRET), could boost device efficiencies provided that FRET rates outpace undesired relaxation pathways. However, predictive models for FRET between distinct 2D states are lacking, particularly with respect to the distance d between a donor and acceptor. We approach FRET in systems with binary mixtures of donor and acceptor 2D perovskite quantum wells (PQWs), and we synthetically tune distances between donor and acceptor by varying alkylammonium spacer cation lengths. FRET rates are monitored using transient absorption spectroscopy and ultrafast photoluminescence, revealing rapid picosecond lifetimes that scale with spacer cation length. We theoretically model these binary mixtures of PQWs, describing the emitters as classical oscillating dipoles. We find agreement with our empirical lifetimes and then determine the effects of lateral extent and layer thickness, establishing fundamental principles for FRET in 2D materials.
机译:由于沿着单个尺寸的量子限制而产生的独特的电子特性,二维(2D)半导体是用于各种光电应用的候选者。结合非地改变的机构,即使得偏置电荷载流子的定向迁移,例如Foerster谐振能量转移(FRET),可以提高设备效率,规定是超出不期望的松弛途径的褶皱率。然而,缺乏不同的2D状态之间的褶皱的预测模型,特别是关于供体和受体之间的距离d。我们在具有施主和受体2D钙钛矿量孔(PQW)的二元混合物中的系统中接近褶皱,并且通过改变烷基铵间隔阳离子长度,我们在综合曲线之间调整供体和受体之间的距离。使用瞬态吸收光谱和超快光致发光监测FRET率,透露速度的快速PICOSECOND寿命,该寿命与间隔阳离子长度缩放。理论上模拟这些PQW的二进制混合物,将发射器描述为经典振荡偶极子。我们发现与我们的经验寿命同意,然后确定横向范围和层厚度的影响,在2D材料中建立褶皱的基本原理。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第11期|4244-4252|共9页
  • 作者单位

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

    Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China Institut National de la Recherche Scientifique-Energie Materiaux et Telecommunications Montreal Quebec H5A 1K6 Canada;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

    Department of Physics and Astronomy Ohio University Athens Ohio 45701 United States;

    Center for Nanoscale Materials Argonne National Laboratory Lemont Illinois 60439 United States;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States Material Science Division Argonne National Laboratory Lemont Illinois 60439 United States;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States Center for Nanoscale Materials Argonne National Laboratory Lemont Illinois 60439 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号