...
首页> 外文期刊>Journal of the American Chemical Society >Identification of Thermal Conduits That Link the Protein-Water Interface to the Active Site Loop and Catalytic Base in Enolase
【24h】

Identification of Thermal Conduits That Link the Protein-Water Interface to the Active Site Loop and Catalytic Base in Enolase

机译:将蛋白质 - 水界面与烯醇酶中的活性位点环和催化基质连接的热导管识别

获取原文
获取原文并翻译 | 示例
           

摘要

We report here on the salient role of protein mobility in accessing conformational landscapes that enable efficient enzyme catalysis. We are focused on yeast enolase, a highly conserved lyase with a TIM barrel domain and catalytic loop, as part of a larger study of the relationship of site selective protein motions to chemical reactivity within superfamilies. Enthalpically hindered variants were developed by replacement of a conserved hydrophobic side chain (Leu 343) with smaller side chains. Leu343 is proximal to the active site base in enolase, and comparative pH rate profiles for the valine and alanine variants indicate a role for side chain hydrophobicity in tuning the pK_a of the catalytic base. However, the magnitude of a substrate deuterium isotope effect is almost identical for wild-type (WT) and Leu343Ala, supporting an unchanged rate-determining proton abstraction step. The introduced hydrophobic side chains at position 343 lead to a discontinuous break in both activity and activation energy as a function of side chain volume. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments were performed as a function of time and temperature for WT and Leu343Ala, and provide a spatially resolved map of changes in protein flexibility following mutation. Impacts on protein flexibility are localized to specific networks that arise at the protein-solvent interface and terminate in a loop that has been shown by X-ray crystallography to close over the active site. These interrelated effects are discussed in the context of long-range, solvent-accessible and thermally activated networks that play key roles in tuning the precise distances and interactions among reactants.
机译:我们在此报告蛋白质流动在访问能够高效酶催化的构象景观中的显着作用。我们专注于酵母烯醇酶,一种高度保守的裂解酶,具有Tim桶结构域和催化回路,作为较大研究的位点选择性蛋白质运动与超小心中的化学反应性关系的一部分。通过用较小的侧链替换保守的疏水侧链(Leu 343)来开发焓受阻变体。 Leu343近端至烯醇酶的活性位点基碱基,缬氨酸和丙氨酸变体的比较pH速率谱表明侧链疏水性在调节催化基质的PK_A时的作用。然而,衬底氘同位素效应的大小对于野生型(WT)和Leu343Ala几乎相同,支持不变的速率确定质子抽象步骤。由于侧链体积的函数,引入的343处的疏水侧链导致活动和活化能中的不连续断裂。作为WT和Leu343Ala的时间和温度进行氢 - 氘交换质谱(HDX-MS)实验,并在突变后提供蛋白质柔性变化的空间分辨地图。对蛋白质柔性的影响是本地化的特异性网络,其在蛋白质 - 溶剂界面中产生并终止于已经通过X射线晶体学显示以关闭活性位点的环路。这些相互关联的效果是在远程,溶剂可接近的和热激活网络的背景下讨论的,这些网络在调整反应物之间的精确距离和相互作用时发挥关键作用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第2期|785-797|共13页
  • 作者单位

    Department of Chemistry University of California Berkeley California 94720 United States California Institute for Quantitative Biosciences (QB3) University of California Berkeley California 94720 United States;

    Department of Chemistry University of California Berkeley California 94720 United States California Institute for Quantitative Biosciences (QB3) University of California Berkeley California 94720 United States;

    Department of Chemistry University of California Berkeley California 94720 United States California Institute for Quantitative Biosciences (QB3) University of California Berkeley California 94720 United States;

    Department of Chemistry University of California Berkeley California 94720 United States California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology University of California Berkeley California 94720 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号