...
首页> 外文期刊>Journal of the American Chemical Society >Temperature and Solvent Effects on H_2 Splitting and Hydricity: Ramifications on CO_2 Hydrogenation by a Rhenium Pincer Catalyst
【24h】

Temperature and Solvent Effects on H_2 Splitting and Hydricity: Ramifications on CO_2 Hydrogenation by a Rhenium Pincer Catalyst

机译:对H_2分裂和氢的温度和溶剂作用:铼钳催化剂CO_2氢化的后果

获取原文
获取原文并翻译 | 示例
           

摘要

The catalytic hydrogenation of carbon dioxide holds immense promise for applications in sustainable fuel synthesis and hydrogen storage. Mechanistic studies that connect thermodynamic parameters with the kinetics of catalysis can provide new understanding and guide predictive design of improved catalysts. Reported here are thermochemical and kinetic analyses of a new pincer-ligated rhenium complex (~(tBu)POCOP)Re(CO)_2 (~(tBu)POCOP = 2,6-bis(di-tert-butylphosphinito)phenyl) that catalyzes CO_2 hydrogenation to formate with faster rates at lower temperatures. Because the catalyst follows the prototypical "outer sphere" hydrogenation mechanism, comprehensive studies of temperature and solvent effects on the H_2 splitting and hydride transfer steps are expected to be relevant to many other catalysts. Strikingly large entropy associated with cleavage of H_2 results in a strong temperature dependence on the concentration of [(~(tBu)POCOP)Re(CO)_2H]~- present during catalysis, which is further impacted by changing the solvent from toluene to tetrahydrofuran to acetonitrile. New methods for determining the hydricity of metal hydrides and formate at temperatures other than 298 K are developed, providing insight into how temperature can influence the favorability of hydride transfer during catalysis. These thermochemical insights guided the selection of conditions for CO_2 hydrogenation to formate with high activity (up to 364 h~(-1) at 1 atm or 3330 h~(-1) at 20 atm of 1:1 H_2:CO_2). In cases where hydride transfer is the highest individual kinetic barrier, entropic contributions to outer sphere H_2 splitting lead to a unique temperature dependence: catalytic activity increases as temperature decreases in tetrahydrofuran (200-fold increase upon cooling from 50 to 0 °C) and toluene (4-fold increase upon cooling from 100 to 50 °C). Ramifications on catalyst structure-function relationships are discussed, including comparisons between "outer sphere" mechanisms and "metal-ligand cooperation" mechanisms.
机译:二氧化碳的催化氢化适用于可持续燃料合成和储氢中的应用。将热力学参数与催化动力学连接热力学参数的机械研究可以提供新的理解和引导预测设计的改进催化剂。这里报道的是一种热化学和动力学和动力学分析的新夹持连接的铼络合物(〜(TBU)Pocop)Re(Co)_2(〜(TBU)Pocop = 2,6-双(二叔丁基氨基氨基硅质)苯基)催化CO_2氢化以在较低温度下具有更快的速率。因为催化剂遵循原型的“外部球体”氢化机理,所以预期对H_2分裂和氢化物转移步骤的温度和溶剂作用的综合研究与许多其他催化剂相关。与H_2的切割相关的尖锐熵导致强烈的温度依赖于催化期间存在的[(〜(TBU)POCOP)Re(CO)_2h]〜 - 存在的浓度,这通过将溶剂从甲苯改变为四氢呋喃,进一步影响乙腈。开发出在298K以外的温度下测定金属氢化物的透明度的新方法,深入了解温度如何影响催化过程中氢化物转移的利益。这些热化学洞察引导为CO_2氢化的条件选择,以高活性(高达364h〜(-1)在1atm或3330h〜(-1),在20atm为1:1 h_2:co_2)。在氢化物转移是最高的单独动力学屏障的情况下,对外球体H_2分裂的熵贡献导致独特的温度依赖性:随着温度降低,四氢呋喃(冷却50至0℃时200倍的增加)而增加,催化活性增加(冷却50至0℃)和甲苯(冷却100至50°C时4倍增加)。讨论了催化剂结构函数关系的影响,包括“外部球体”机制与“金属配体合作”机制之间的比较。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第2期|945-954|共10页
  • 作者单位

    Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 United States;

    Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 United States;

    Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号