首页> 外文期刊>Journal of the American Chemical Society >Electrolyte Oxidation Pathways in Lithium-Ion Batteries
【24h】

Electrolyte Oxidation Pathways in Lithium-Ion Batteries

机译:锂离子电池中的电解质氧化途径

获取原文
获取原文并翻译 | 示例
       

摘要

The mitigation of decomposition reactions of lithium-ion battery electrolyte solutions is of critical importance in controlling device lifetime and performance. However, due to the complexity of the system, exacerbated by the diverse set of electrolyte compositions, electrode materials, and operating parameters, a clear understanding of the key chemical mechanisms remains elusive. In this work, operando pressure measurements, solution NMR, and electrochemical methods were combined to study electrolyte oxidation and reduction at multiple cell voltages. Two-compartment LiCoO_2/Li cells were cycled with a lithium-ion conducting glass-ceramic separator so that the species formed at each electrode could be identified separately and further reactions of these species at the opposite electrode prevented. One principal finding is that chemical oxidation (with an onset voltage of ~4.7 V vs Li/Li+ for LiCoO_2), rather than electrochemical reaction, is the dominant decomposition process at the positive electrode surface in this system. This is ascribed to the well-known release of reactive oxygen at higher states-of-charge, indicating that reactions of the electrolyte at the positive electrode are intrinsically linked to surface reactivity of the active material. Soluble electrolyte decomposition products formed at both electrodes are characterized, and a detailed reaction scheme is constructed to rationalize the formation of the observed species. The insights on electrolyte decomposition through reactions with reactive oxygen species identified through this work have a direct impact on understanding and mitigating degradation in high-voltage/higher-energy-density LiCoO_2-based cells, and more generally for cells containing nickel-containing cathode materials (e.g., LiNi_xMn_y,Co_2O_2; NMCs), as they lose oxygen at lower operating voltages.
机译:锂离子电池电解质溶液的分解反应减轻在控制装置寿命和性能方面是至关重要的。然而,由于系统的复杂性,由多样化的电解质组合物,电极材料和操作参数加剧,清楚地了解关键的化学机制仍然难以捉摸。在这项工作中,组合了Operando压力测量,溶液NMR和电化学方法以研究电解质氧化和多个电池电压的降低。用锂离子传导玻璃 - 陶瓷分离器循环双隔室LiCoO_2 / Li细胞,使得在每个电极处形成的物质可以单独鉴定,并且在相反的电极下进一步反应这些物质。一个主要发现是化学氧化(具有〜4.7V vs Li / Li +的起始电压,而不是电化学反应,是该系统中正极表面的显性分解过程。这在较高的充电状态下归因于众所周知的反应性氧释放,表明电解质在正电极处的反应与活性材料的表面反应性有本质上连接。在两个电极上形成的可溶性电解质分解产物的特征在于,构建详细的反应方案以合理化所观察到的物种的形成。通过通过该工作鉴定的反应性氧物种反应对电解质分解的见解对高压/高能量密度LiCoOn_2基细胞的理解和缓解降解直接影响,并且更通常含有含镍的阴极材料的细胞(例如,LINI_XMN_Y,CO_2O_2; NMCS),因为它们在较低的工作电压下丢失氧气。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第35期|15058-15074|共17页
  • 作者单位

    Department of Chemistry University of Cambridge Cambridge CB2 1EW U.K;

    Department of Chemistry University of Cambridge Cambridge CB2 1EW U.K The Faraday Institution Didcot 0X11 ORA U.K;

    Department of Chemistry University of Cambridge Cambridge CB2 1EW U.K;

    Department of Chemistry University of Cambridge Cambridge CB2 1EW U.K. The Faraday Institution Didcot 0X11 ORA U.K;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:16:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号