...
首页> 外文期刊>Journal of the American Chemical Society >Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane
【24h】

Electrochemical Switching of a Fluorescent Molecular Rotor Embedded within a Bistable Rotaxane

机译:嵌入体旋刀内的荧光分子转子的电化学切换

获取原文
获取原文并翻译 | 示例
           

摘要

We report how the nanoconfined environment, introduced by the mechanical bonds within an electrochemically switchable bistable [2]rotaxane, controls the rotation of a fluorescent molecular rotor, namely, an 8-phenyl-substituted boron dipyrromethene (BODIPY). The electrochemical switching of the bistable [2] rotaxane induces changes in the ground-state coconformation and in the corresponding excited-state properties of the BODIPY rotor. In the starting redox state, when no external potential is applied, the cyclobis(paraquat-p-phenylene) (CBPQT~(4+)) ring component encircles the tetrathiafulvalene (TTF) unit on the dumbbell component, leaving the BODIPY rotor unhindered and exhibiting low fluorescence. Upon oxidation of the TTF unit to a TTF~(2+) dication, the CBPQT~(4+) ring is forced toward the molecular rotor, leading to an increased energy barrier for the excited state to rotate the rotor into the state with a high nonradiative rate constant, resulting in an overall 3.4-fold fluorescence enhancement. On the other hand, when the solvent polarity is high enough to stabilize the excited charge-transfer state between the BODIPY rotor and the CBPQT~(4+) ring, movement of the ring toward the BODIPY rotor produces an unexpectedly strong fluorescence signal decrease as the result of photoinduced electron transfer from the BODIPY rotor to the CBPQT~(4+) ring. The nanoconfinement effect introduced by mechanical bonding can effectively lead to modulation of the physicochemical properties as observed in this bistable [2] rotaxane. On account of the straightforward synthetic strategy and the facile modulation of switchable electrochromic behavior, our approach could pave the way for the development of new stimuli-responsive materials based on mechanically interlocked molecules for future electro-optical applications, such as sensors, molecular memories, and molecular logic gates.
机译:我们报告了通过电化学可切换的双稳态[2]旋转烷内的机械键合的纳米核状环境如何控制荧光分子转子的旋转,即8苯基取代的硼双甲烯(BODIPY)。双稳态[2]旋刀的电化学切换引起了地面通芯的变化以及Bydipy转子的相应激发状态性质。在起始的氧化还原状态下,当没有施加外部电位时,Cyclobis(百草枯-P-亚苯基)(CBPQT〜(4 +))环组分环绕哑铃组分的四硫甲戊烯(TTF)单元,使Bavipy转子无阻碍地表现出低荧光。在TTF单元的氧化到TTF〜(2+)中,CBPQT〜(4+)环被迫朝向分子转子,导致激发状态增加的能量屏障,以使转子旋转到状态高的非极性速率恒定,导致总体3.4倍的荧光增强。另一方面,当溶剂极性足够高以稳定BODIPY转子和CBPQT〜(4+)环之间的激发电荷转移状态时,环朝向BODIPY转子的移动产生意外强的荧光信号减少从BOBIPY转子到CBPQT〜(4+)环的光导电子的结果。通过机械键合引入的纳米钨效果可以有效地导致在该双稳态[2]旋烷中观察到的物理化学性质的调节。由于简单的合成策略和可切换电致变色行为的嵌体调制,我们的方法可以为基于机械互锁的分子进行新的刺激响应材料的开发方式,用于未来的电光应用,例如传感器,分子记忆,和分子逻辑门。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第27期|11835-11846|共12页
  • 作者单位

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

    Department of Chemical Sciences University of Padova Padova 3S131 Italy;

    Materials and Process Simulation Center California Institute of Technology Pasadena California 91125 United States;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

    Materials and Process Simulation Center California Institute of Technology Pasadena California 91125 United States;

    Department of Chemistry and Institute for Sustainability and Energy at Northwestern (ISEN) Northwestern University Evanston Illinois 60208 United States;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China School of Chemistry University of New South Wales Sydney New South Wales 2052 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号