首页> 外文期刊>Journal of the American Chemical Society >Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling
【24h】

Electrostatic Interactions Govern Extreme Nascent Protein Ejection Times from Ribosomes and Can Delay Ribosome Recycling

机译:静电相互作用控制了来自核糖体的极端新生蛋白质的喷射时间,并可能延迟核糖体的回收。

获取原文
获取原文并翻译 | 示例
       

摘要

The ejection of nascent proteins out of the ribosome exit tunnel, after their covalent bond to transfer-RNA has been broken, has not been experimentally studied due to challenges in sample preparation. Here, we investigate this process using a combination of multiscale modeling, ribosome profiling, and gene ontology analyses. Simulating the ejection of a representative set of 122 E. coli proteins we find a greater than 1000-fold variation in ejection times. Nascent proteins enriched in negatively charged residues near their C-terminus eject the fastest, while nascent chains enriched in positively charged residues tend to eject much more slowly. More work is required to pull slowly ejecting proteins out of the exit tunnel than quickly ejecting proteins, according to all-atom simulations. An energetic decomposition reveals, for slowly ejecting proteins, that this is due to the strong attractive electrostatic interactions between the nascent chain and the negatively charged ribosomal-RNA lining the exit tunnel, and for quickly ejecting proteins, it is due to their repulsive electrostatic interactions with the exit tunnel. Ribosome profiling data from E. coli reveals that the presence of slowly ejecting sequences correlates with ribosomes spending more time at stop codons, indicating that the ejection process might delay ribosome recycling. Proteins that have the highest positive charge density at their C-terminus are overwhelmingly ribosomal proteins, suggesting the possibility that this sequence feature may aid in the cotranslational assembly of ribosomes by delaying the release of nascent ribosomal proteins into the cytosol. Thus, nascent chain ejection times from the ribosome can vary greatly between proteins due to differential electrostatic interactions, can influence ribosome recycling, and could be particularly relevant to the synthesis and cotranslational behavior of some proteins.
机译:由于与样品制备相关的挑战,尚未对新生蛋白质与转移RNA的共价键断裂后从核糖体出口通道中喷出的蛋白质进行过实验研究。在这里,我们使用多尺度建模,核糖体分析和基因本体分析相结合的方法来研究该过程。模拟一组代表性的122种大肠杆菌蛋白质的喷射,我们发现喷射时间的变化大于1000倍。富集在C末端附近带负电荷残基的新生蛋白质最快排出,而富集带正电荷残基的新生链倾向于缓慢得多。根据全原子模拟,与快速排出蛋白质相比,将缓慢排出蛋白质从出口通道中拉出需要更多的工作。能量分解表明,对于缓慢排出的蛋白质,这是由于新生链与出口通道内衬的带负电荷的核糖体-RNA之间强烈的有吸引力的静电相互作用,而对于快速排出的蛋白质,则是由于它们的排斥性静电相互作用与出口隧道。来自大肠杆菌的核糖体分析数据表明,缓慢排出序列的存在与核糖体在终止密码子上花费更多时间有关,这表明排出过程可能会延迟核糖体的回收。在其C末端具有最高正电荷密度的蛋白质绝大多数是核糖体蛋白质,这表明该序列特征可能会通过延迟新生核糖体蛋白质释放到细胞质中来协助核糖体的共翻译组装。因此,由于差异的静电相互作用,来自核糖体的新生链弹射时间会在蛋白质之间发生很大变化,会影响核糖体的再循环,并且可能与某些蛋白质的合成和共翻译行为特别相关。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第13期|6103-6110|共8页
  • 作者单位

    Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 United States;

    Institute of Physics Polish Academy of Sciences 02-668 Warsaw Poland;

    Department of Chemistry and Bioinformatics and Genomics Graduate Program The Huck Institutes of the Life Sciences Pennsylvania State University University Park Pennsylvania 16802 United States;

    Institute of Physics Polish Academy of Sciences 02-668 Warsaw Poland Institute for Computational Sciences and Technology Ho Chi Minh City Vietnam;

    Department of Chemistry Bioinformatics and Genomics Graduate Program The Huck Institutes of the Life Sciences and Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16802 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:28:36

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号