首页> 外文期刊>Journal of the American Chemical Society >Correlation between the C-C Cross-Coupling Activity and C-to-Ni Charge Transfer Transition of High-Valent Ni Complexes
【24h】

Correlation between the C-C Cross-Coupling Activity and C-to-Ni Charge Transfer Transition of High-Valent Ni Complexes

机译:高价镍配合物的C-C交叉偶联活性与C-Ni电荷转移跃迁的相关性

获取原文
获取原文并翻译 | 示例
           

摘要

High-valent Ni complexes have proven to be good platforms for diverse cross-coupling reactions that are otherwise difficult to be achieved with conventional low-valent catalysts. However, their reductive elimination (RE) activities are still significantly variable by up to 5 orders of magnitude, depending on the supporting ligand and oxidation state of the Ni center. To elucidate frontier molecular orbitals (FMOs) that determine the RE activity of the Ni center, the electronic structures of cycloneophyl (CH_2C(CH_3)_2o-C_6H_4) Ni~Ⅲ and Ni~Ⅳ complexes have been characterized by utilizing various transition metal-based spectroscopic techniques such as electronic absorption, magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and X-ray absorption spectroscopies. In combination with density functional theory computations, the spectroscopic analyses have shown that the energies of the C-to-Ni charge-transfer (CT) electronic transitions are strongly correlated to the rates of C—C bond-forming RE reaction. This correlation suggests that the kinetic barrier of the RE reaction is determined by energy cost for internal CT (ICT) from the coordinated carbon moiety to the Ni center, and that FMOs involved in the RE reaction and the C-to-Ni CT electronic transitions are essentially identical. This FMO determination has led us to discover that photoexcitation to the C-to-Ni CT excited states accelerates the C—C cross-coupling reaction by up to 10~5 times, as the CT electronic transition can substitute for the rate-determining ICT step of the RE reaction at the ground electronic state.
机译:高价Ni络合物已被证明是进行多种交叉偶联反应的良好平台,而这些交叉偶联反应通常很难用常规的低价催化剂实现。但是,它们的还原消除(RE)活性仍然显着变化,最多可变化5个数量级,具体取决于镍基团的配位体和氧化态。为了阐明决定Ni中心RE活性的前沿分子轨道(FMOs),已通过利用各种过渡金属基化合物表征了新叶气旋(CH_2C(CH_3)_2o-C_6H_4)Ni〜Ⅲ和Ni〜Ⅳ配合物的电子结构。光谱技术,例如电子吸收,圆环状二向色性,电子顺磁共振,共振拉曼光谱和X射线吸收光谱。结合密度泛函理论计算,光谱分析表明C-Ni电荷转移(CT)电子跃迁的能量与C-C键形成RE反应的速率密切相关。这种相关性表明,RE反应的动力学障碍由内部CT(ICT)从配位碳原子团到Ni中心的能源成本决定,并且参与RE反应和C-Ni-CT电子跃迁的FMOs基本相同。 FMO的确定使我们发现,对C到Ni的CT激发态进行光激发可将CC交叉耦合反应加速多达10到5倍,因为CT电子跃迁可以代替速率确定的ICT。基态电子反应的第一步。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第9期|4173-4183|共11页
  • 作者

  • 作者单位

    Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号