首页> 外文期刊>Journal of the American Chemical Society >Origin of High Activity and Durability of Twisty Nanowire Alloy Catalysts under Oxygen Reduction and Fuel Cell Operating Conditions
【24h】

Origin of High Activity and Durability of Twisty Nanowire Alloy Catalysts under Oxygen Reduction and Fuel Cell Operating Conditions

机译:氧减少和燃料电池运行条件下扭曲纳米线合金催化剂的高活性和耐久性的起源

获取原文
获取原文并翻译 | 示例
       

摘要

The ability to control the surface composition and morphology of alloy catalysts is critical for achieving high activity and durability of catalysts for oxygen reduction reaction (ORR) and fuel cells. This report describes an efficient surfactant-free synthesis route for producing a twisty nanowire (TNW) shaped platinum—iron (PtFe) alloy catalyst (denoted as PtFe TNWs) with controllable bimetallic compositions. PtFe TNWs with an optimal initial composition of ~24% Pt are shown to exhibit the highest mass activity (3.4 A/mg_(pυ) ~20 times higher than that of commercial Pt catalyst) and the highest durability (<2% loss of activity after 40 000 cycles and <30% loss after 120 000 cycles) among all PtFe-based nanocatalysts under ORR or fuel cell operating conditions reported so far. Using ex situ and in situ synchrotron X-ray diffraction coupled with atomic pair distribution function (PDF) analysis and 3D modeling, the PtFe TNWs are shown to exhibit mixed face-centered cubic (fcc)—body-centered cubic (bcc) alloy structure and a significant lattice strain. A striking finding is that the activity strongly depends on the composition of the as-synthesized catalysts and this dependence remains unchanged despite the evolution of the composition of the different catalysts and their lattice constants under ORR or fuel cell operating conditions. Notably, dealloying under fuel cell operating condition starts at phase-segregated domain sites leading to a final fcc alloy structure with subtle differences in surface morphology. Due to a subsequent realloying and the morphology of TNWs, the surface lattice strain observed with the as-synthesized catalysts is largely preserved. This strain and the particular facets exhibited by the TNWs are believed to be responsible for the observed activity and durability enhancements. These findings provide new insights into the correlation between the structure, activity, and durability of nanoalloy catalysts and are expected to energize the ongoing effort to develop highly active and durable low-Pt-content nanowire catalysts by controlling their alloy structure and morphology.
机译:控制合金催化剂的表面组成和形态的能力对于实现用于氧还原反应(ORR)和燃料电池的催化剂的高活性和耐久性至关重要。该报告描述了一种有效的无表面活性剂合成路线,该路线可用于生产具有可控双金属成分的扭曲纳米线(TNW)形的铂-铁(PtFe)合金催化剂(表示为PtFe TNWs)。最佳初始组成为约24%Pt的PtFe TNWs表现出最高的质量活性(3.4 A / mg_(pυ)约是市售Pt催化剂的20倍)和最高的耐久性(活性降低<2%)到目前为止,在ORR或燃料电池运行条件下,所有基于PtFe的纳米催化剂中,在4万次循环后损耗小于20万次后损耗小于30%)。使用异位和原位同步加速器X射线衍射以及原子对分布函数(PDF)分析和3D建模,PtFe TNW表现出混合的面心立方(fcc)-体心立方(bcc)合金结构和明显的晶格应变。一个惊人的发现是,活性在很大程度上取决于合成催化剂的组成,尽管在ORR或燃料电池工作条件下,不同催化剂的组成及其晶格常数发生了变化,但这种依赖性仍然保持不变。值得注意的是,在燃料电池工作条件下的脱合金从相分离的畴位开始,从而导致最终的fcc合金结构在表面形态上有细微的差异。由于随后的重整和TNW的形态,使用合成催化剂观察到的表面晶格应变得到了很大程度的保留。 TNW表现出的这种应变和特定的面被认为是所观察到的活性和耐久性增强的原因。这些发现为纳米合金催化剂的结构,活性和耐久性之间的相关性提供了新的见识,并有望激发通过控制其合金结构和形态来开发高活性和耐用的低Pt含量纳米线催化剂的持续努力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号