首页> 外文期刊>Journal of the American Chemical Society >Electric Response and Conductivity Mechanism of Blended Polyvinylidene Fluoride/Nafion Electrospun Nanofibers
【24h】

Electric Response and Conductivity Mechanism of Blended Polyvinylidene Fluoride/Nafion Electrospun Nanofibers

机译:聚偏二氟乙烯/ Nafion电纺纳米纤维的电响应和电导机理

获取原文
获取原文并翻译 | 示例
       

摘要

The electrical relaxation and polarization phenomena of electrospun PVDF (P)/Nafion (N) blended fiber mats ([P/N_(0.9)]~M and β-[P]~M) and membranes ([P/ N_(0.9)]~(MM)) are compared with those of the solvent-cast membrane of identical composition ([N]~C and [P/N_(0.9)]~C). The nature of the interactions between the two blended polymer components, that plays a pivotal role in the electrical nature of the resulting materials, is found to be governed by the fabrication method, with those materials obtained via electrospinning undergoing a "reciprocal templating" phenomenon that renders their electrical behavior (especially when in the dry state) significantly different from that of the blended membrane obtained via solvent casting. Broadband Electrical Spectroscopy (BES) demonstrates that the electric response of the blended materials is modulated by polarization phenomena and by α, β, and y dielectric relaxation events of Nafion domains supported on β-PVDF. The coupling between the relaxations of β-PVDF with those of Nafion matrix is directly correlated to the "reciprocal templating effect, which modulates the interactions between Nafion and PVDF in electrospun membranes. Two types of conductivity mechanisms characterize the H~+ migration within the polymer blends: (1) interdomain H~+ migration events by "charge-exchange" phenomena along percolation pathways and (2) H~+ exchange between delocalization bodies (DBs) at binding sites at the interface between domains with different ε, size, and morphology. The electrical response of the electrospun membranes also suggests that they do not comprise water clusters with a large size such as those typically observed in pristine Nafion. Rather, the adsorbed H_2O molecules, under wet conditions, form thin solvation shells wrapping the polar side chains of the Nafion component. At T = 80 ℃, the conductivity of the studied materials decreases in the order [N]~C (0.043 S·cm~(-1)) ≈ [P/N_(0.9)]~C (0.042 S·cm~(-1)) > [P/N_(0.9)]~M (0.031 S·cm~(-1)) > [P/N_(0.9)]~(MM) (0.011 S·cm~(-1)).
机译:电纺PVDF(P)/ Nafion(N)混合纤维毡([P / N_(0.9)]〜M和β-[P]〜M)和膜([P / N_(0.9)将]〜(MM))与相同组成([N]〜C和[P / N_(0.9)]〜C)的溶剂流延膜进行比较。发现两种共混聚合物组分之间相互作用的性质在所得材料的电学性质中起着关键作用,这种相互作用的性质受制于制造方法,通过静电纺丝获得的那些材料会经历“相互模板化”现象,使其电性能(尤其是在干燥状态下)与通过溶剂浇铸获得的共混膜的电性能显着不同。宽带电谱(BES)表明,共混材料的电响应受极化现象以及受β-PVDF支撑的Nafion域的α,β和y介电弛豫事件的调节。 β-PVDF的弛豫与Nafion基质的弛豫之间的耦合与“相互模板效应”直接相关,后者调节电纺膜中Nafion和PVDF之间的相互作用。两种电导率机制表征聚合物中H〜+的迁移共混:(1)通过渗流途径的“电荷交换”现象引起的域间H〜+迁移事件,以及(2)在具有不同ε,大小和不同的域之间的界面处的结合位点处,离域体(DBs)之间的H〜+交换电纺膜的电响应也表明它们不包含大尺寸的水簇,如在原始Nafion中通常观察到的那样,而是在潮湿条件下吸附的H_2O分子形成包裹极性侧的薄溶剂化壳。在T = 80℃时,所研究材料的电导率以[N]〜C(0.043 S·cm〜(-1))≈[P / N_(0.9)]〜C( 0.04 2 S·cm〜(-1))> [P / N_(0.9)]〜M(0.031 S·cm〜(-1))> [P / N_(0.9)]〜(MM)(0.011 S·cm 〜(-1))。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第2期|801-814|共14页
  • 作者单位

    Section of Chemistry for the Technology Department of Industrial Engineering University of Padova Via Marzolo 9 I-35131 Padova (Pd) Italy National Interuniversity Consortium of Materials Science and Technology (INSTM) Via Marzolo 9 I-35131 Padova (Pd) Italy;

    Section of Chemistry for the Technology Department of Industrial Engineering University of Padova Via Marzolo 9 I-35131 Padova (Pd) Italy;

    Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee 37235 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:17:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号