首页> 外文期刊>Journal of the American Chemical Society >Revisiting Conversion Reaction Mechanisms in Lithium Batteries: Lithiation-Driven Topotactic Transformation in FeF_2
【24h】

Revisiting Conversion Reaction Mechanisms in Lithium Batteries: Lithiation-Driven Topotactic Transformation in FeF_2

机译:锂电池转化反应机理的再探:FeF_2中锂化驱动的全能转化

获取原文
获取原文并翻译 | 示例
       

摘要

Intercalation-type electrodes have now been commonly employed in today's batteries as such materials are capable of storing and releasing lithium reversibly via topotactic transformation, conducive to small structural change, but they have limited interstitial sites to hold Li. In contrast, conversion electrodes feature high Li-storage capacity, but often undergo large structural change during (de)lithiation, resulting in cycling instability. One exception is iron fluoride (FeF2), a conversion-type cathode that exhibits both high capacity and high cycling stability. Herein, we report a lithiation-driven topotactic transformation in a single crystal of FeF2, unveiled by in situ visualization of the spatial and crystallographic correlation between the parent and converted phases. Specifically, conversion in FeF2 resembles the intercalation process but involves transport of both Li+ and Fe2+ ions within the F-anion array, leading to formation of Fe preferentially along specific crystallographic orientations of FeF2. Throughout the process, the F-anion framework is retained, creating a checkerboard-like structure, within which the volume change is largely compensated, thereby enabling the high cyclability in FeF2. Findings from this study, with unique insights into conversion reaction mechanisms, may help to pave the way for designing conversion-type electrodes for the next-generation high energy lithium batteries.
机译:嵌入型电极现在已广泛用于当今的电池中,因为这种材料能够通过电位转变可逆地存储和释放锂,这有助于微小的结构变化,但它们的间隙位点有限,无法容纳锂。相反,转换电极具有较高的锂存储容量,但在(去锂化)过程中通常会发生较大的结构变化,从而导致循环不稳定。唯一的例外是氟化铁(FeF2),这是一种既具有高容量又具有高循环稳定性的转化型阴极。在本文中,我们报告了FeF2单晶中锂化驱动的全向立构转变,这是通过母体相与转化相之间的空间和晶体学相关性的原位可视化揭示的。具体而言,FeF2中的转化过程类似于插层过程,但涉及Li +和Fe2 +离子在F阴离子阵列中的迁移,从而导致优先沿FeF2的特定晶体取向形成Fe。在整个过程中,F阴离子框架得以保留,形成了类似于棋盘状的结构,在该结构中体积变化得到了很大的补偿,从而实现了FeF2的高可循环性。这项研究的发现具有对转化反应机理的独特见解,可能有助于为设计下一代高能锂电池的转化型电极铺平道路。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第51期|17915-17922|共8页
  • 作者单位

    Brookhaven Natl Lab Sustainable Energy Technol Dept Upton NY 11973 USA;

    Brookhaven Natl Lab Dept Condensed Matter Phys & Mat Sci Upton NY 11973 USA;

    Univ Wisconsin Mat Sci & Engn Eau Claire WI 54701 USA;

    Univ Coll Cork Sch Chem Cork T12 YN60 Ireland|Univ Coll Cork Tyndall Natl Inst Cork T12 YN60 Ireland|Trin Coll Dublin AMBER CRANN Dublin 2 Ireland;

    Rutgers State Univ Dept Mat Sci & Engn 607 Taylor Rd Piscataway NJ 08854 USA;

    Brookhaven Natl Lab Ctr Funct Nanomat Upton NY 11973 USA|Univ Penn Dept Mat Sci & Engn Philadelphia PA 19104 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:36:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号