首页> 外文期刊>Journal of the American Chemical Society >Mixed Electron-Proton Conductors Enable Spatial Separation of Bond Activation and Charge Transfer in Electrocatalysis
【24h】

Mixed Electron-Proton Conductors Enable Spatial Separation of Bond Activation and Charge Transfer in Electrocatalysis

机译:混合的电子-质子导体可实现电催化作用中键活化和电荷转移的空间分离

获取原文
获取原文并翻译 | 示例
           

摘要

Electrochemical energy conversion requires electrodes that can simultaneously facilitate substrate bond activation and electron-proton charge transfer. Traditional electrodes co-localize both functions to a single solidlliquid interface even though each process is typically favored in a disparate reaction environment. Herein, we establish a strategy for spatially separating bond activation and charge transfer by exploiting mixed electron-proton conduction (MEPC) in an oxide membrane. Specifically, we interpose a MEPC WOx membrane between a Pt catalyst and aqueous electrolyte and show that this composite electrode is active for the hydrogen oxidation reaction (HOR). Consistent with H-2 activation occurring at the gaslsolid interface, the composite electrode displays HOR current densities over 8-fold larger than the diffusion-limited rate of HOR catalysis at a singular Ptlsolution interface. The segregation of bond activation and charge separation steps also confers excellent tolerance to poisons and impurities introduced to the electrolyte. Mechanistic studies establish that H-2 activation at the Ptlgas interface is coupled to the electron-proton charge separation at the WOx lsolution interface via rapid H-diffusion in the bulk of the WOx. Consequently, the rate of HOR is principally controlled by the rate of H-spillover at the PtIWOx boundary. Our results establish MEPC membrane electrodes as a platform for spatially separating the critical bond activation and charge transfer steps of electrocatalysis.
机译:电化学能量转换需要能够同时促进基体键活化和电子质子电荷转移的电极。传统的电极将两种功能共定位在一个固-液界面上,即使在不同的反应环境中通常倾向于使用每个过程。在本文中,我们建立了一种通过利用氧化膜中的混合电子-质子传导(MEPC)在空间上分离键激活和电荷转移的策略。具体而言,我们将MEPC WOx膜插入Pt催化剂和水性电解质之间,表明该复合电极对氢氧化反应(HOR)具有活性。与气态固体界面上发生的H-2活化相一致,复合电极显示的HOR电流密度比单一奇异溶液界面上HOR催化的扩散限制速率大8倍以上。键活化和电荷分离步骤的分离还赋予对引入到电解质中的毒物和杂质的优异耐受性。机理研究表明,Ptlgas界面处的H-2活化通过WOx主体中的快速H扩散与WOx溶液界面处的电子-质子电荷分离耦合。因此,HOR的速率主要由PtIWOx边界处的H溢出速率控制。我们的结果建立了MEPC膜电极作为平台,用于空间分离电催化的关键键活化和电荷转移步骤。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第28期|11115-11122|共8页
  • 作者单位

    MIT, Dept Chem, Cambridge, MA 02139 USA;

    MIT, Dept Chem, Cambridge, MA 02139 USA;

    MIT, Dept Chem, Cambridge, MA 02139 USA;

    MIT, Dept Chem, Cambridge, MA 02139 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号