首页> 外文期刊>Journal of the American Chemical Society >Computational Estimation of Microsecond to Second Atomistic Folding Times
【24h】

Computational Estimation of Microsecond to Second Atomistic Folding Times

机译:微秒至秒原子折叠时间的计算估计

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the development of massively parallel computing hardware including inexpensive graphics processing units (GPUs), it has remained infeasible to simulate the folding of atomistic proteins at room temperature using conventional molecular dynamics (MD) beyond the microsecond scale. Here, we report the folding of atomistic, implicitly solvated protein systems with folding times tau ranging from similar to 10 mu s to similar to 100 ms using the weighted ensemble (WE) strategy in combination with GPU computing. Starting from an initial structure or set of structures, WE organizes an ensemble of GPU-accelerated MD trajectory segments via intermittent pruning and replication events to generate statistically unbiased estimates of rate constants for rare events such as folding; no biasing forces are used. Although the variance among atomistic WE folding runs is significant, multiple independent runs are used to reduce and quantify statistical uncertainty. Folding times are estimated directly from WE probability flux and from history-augmented Markov analysis of the WE data. Three systems were examined: NTL9 at low solvent viscosity (yielding tau(f) = 0.8-9 mu s), NTL9 at water-like viscosity (tau(f) = 0.2-2 ms), and Protein G at low viscosity (tau(f) = 3-200 ms). In all cases, the folding time, uncertainty, and ensemble properties could be estimated from WE simulation; for Protein G, this characterization required significantly less overall computing than would be required to observe a single folding event with conventional MD simulations. Our results suggest that the use and calibration of force fields and solvent models for precise estimation of kinetic quantities is becoming feasible.
机译:尽管开发了包括廉价图形处理单元(GPU)的大规模并行计算硬件,但使用微秒级以上的常规分子动力学(MD)在室温下模拟原子蛋白的折叠仍不可行。在这里,我们报告了使用加权集成(WE)策略与GPU计算相结合的折叠时间tau介于约10μs到约100 ms的原子性隐性溶剂化蛋白质系统的折叠。从一个初始结构或一组结构开始,WE通过间歇修剪和复制事件来组织GPU加速的MD轨迹段的集合,以生成统计上无偏见的速率常数估计值,例如折叠等罕见事件。不使用偏压力。尽管原子WE折叠运行之间的差异很大,但可以使用多个独立运行来减少和量化统计不确定性。直接从WE概率通量和WE数据的历史增强型马尔可夫分析直接估计折叠时间。检查了三种系统:低溶剂粘度的NTL9(产生tau(f)= 0.8-9μs),水样粘度的NTL9(tau(f)= 0.2-2 ms)和低粘度的蛋白G(tau) (f)= 3-200毫秒)。在所有情况下,折叠时间,不确定性和合奏性质都可以通过WE模拟进行估算;对于蛋白质G,此表征所需的总体计算量大大少于使用常规MD模拟观察单个折叠事件所需的总体计算量。我们的结果表明,使用力场和溶剂模型进行校准以及精确估算动力学量正变得可行。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第16期|6519-6526|共8页
  • 作者单位

    Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, Portland, OR 97239 USA;

    Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, Portland, OR 97239 USA;

    Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, Portland, OR 97239 USA;

    North Carolina State Univ, NCSU Data Sci Resources, Raleigh, NC 27695 USA;

    Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, Portland, OR 97239 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号