首页> 外文期刊>Journal of the American Chemical Society >Expanding the Scope of Protein Synthesis Using Modified Ribosomes
【24h】

Expanding the Scope of Protein Synthesis Using Modified Ribosomes

机译:使用修饰的核糖体扩大蛋白质合成的范围

获取原文
获取原文并翻译 | 示例
           

摘要

The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of D-amino acids, beta-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic L-alpha-amino acids. While proteins containing meta-bolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.
机译:核糖体产生细胞中存在的所有蛋白质和许多肽。作为由RNA和蛋白质组成的高分子复合物,它利用RNA组成成分来快速,高保真地催化肽键的形成。因此,可以说核糖体代表了RNA世界(其中RNA是主要的催化剂)与当前生物系统(其中蛋白质催化剂占主导)之间的关键联系。尽管通过进化史众所周知的rRNA的系统发育保守性,但将rRNA置于适当的压力下(例如10在与rRNA功能关键区域结合的抗生素存在下。尽管数十年来有意改变了rRNA的结构以研究其在肽键形成机理中的作用,但值得注意的是,有目的地改变rRNA的结构可以使包含非规范氨基的蛋白质和肽得以加工酸是最近才发生的。在此观点中,我们总结了rRNA修饰的历史,并证明了在肽键形成关键区域中23S rRNA的有意修饰现在如何使D-氨基酸,β-氨基酸,二肽和二肽模拟物类似物的直接核糖体掺入成为可能。正常的蛋白质L-α-氨基酸。虽然通常通过新生多肽的翻译后修饰来修饰含有代谢重要功能基团(例如碳水化合物和磷酸基)的蛋白质,但同时也讨论了使用修饰的核糖体直接生产此类聚合物的方法。最后,我们描述了在体外和细菌细胞中修饰蛋白的修饰方法,并提出了在未来的研究中如何利用这种新颖的生物材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第16期|6430-6447|共18页
  • 作者单位

    Arizona State Univ, Biodesign Ctr BioEnerget, Tempe, AZ 85287 USA;

    Arizona State Univ, Biodesign Ctr BioEnerget, Tempe, AZ 85287 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号