首页> 外文期刊>Journal of the American Chemical Society >SINGLET METHYLCARBENE - AN ELUSIVE INTERMEDIATE OF THE THERMAL DECOMPOSITION OF DIAZOETHANE AND METHYLDIAZIRENE
【24h】

SINGLET METHYLCARBENE - AN ELUSIVE INTERMEDIATE OF THE THERMAL DECOMPOSITION OF DIAZOETHANE AND METHYLDIAZIRENE

机译:甲基甲基辛二酮-重氮乙烷和甲基二氮杂烯热分解的难解中间体

获取原文
获取原文并翻译 | 示例
       

摘要

Ab initio methods have been employed to study the decomposition pathways of diazoethane and methyldiazirene as two possible precursors for the formation of methylcarbene. Geometries have been optimized at the SCF, MP2, and CISD levels of theory using 6-31G*, DZP, and TZP basis sets. Final energies were obtained at the TZP CCSD(T)//TZP CISD+ZPVE(DZP CISD) level. Vibrational frequencies were evaluated up to the DZP CISD level. Two possible mechanisms were considered: (a) simultaneous breaking of the C-N bond and migration of a methyl hydrogen to form ethylene and N-2, and (b) stepwise formation of methylcarbene and N-2 followed by rearrangement to ethylene and N-2. For both starting materials only the stepwise pathway was found. The activation barriers for the decomposition of diazoethane and methyldiazirene are 26.9 and 30.1 kcal/mol at our highest level, respectively. The barrier for the reverse association from methylcarbene + N-2 to diazoethane is only 3.3 kcal/mol; this barrier is 11.7 kcal/mol for methyldiazirene. There is no indication that surface crossings with the first excited states (generally >60 kcal mol(-1)) may occur. These results are in excellent agreement with experimental findings, and they nicely explain the difficulties involved in the isolation of methylcarbene, which lies on a small shoulder of the potential connecting the precursors and products. In view of further experimental work, methylcarbene should be more readily trapped using diazoethane as a precursor. [References: 23]
机译:从头算方法已用于研究重氮甲烷和甲基二氮杂戊烯作为形成甲基卡宾的两种可能前体的分解途径。已使用6-31G *,DZP和TZP基集在理论的SCF,MP2和CISD级别优化了几何形状。最终能量在TZP CCSD(T)// TZP CISD + ZPVE(DZP CISD)级别获得。对振动频率进行了评估,直至达到DZP CISD水平。考虑了两种可能的机理:(a)同时断裂CN键和甲基氢迁移形成乙烯和N-2,(b)逐步形成甲基卡宾和N-2,然后重排为乙烯和N-2 。对于两种起始材料,仅发现了逐步途径。在我们的最高水平下,重氮乙烷和甲基二氮杂戊烯的分解活化障碍分别为26.9 kcal / mol和30.1 kcal / mol。从甲基卡宾+ N-2到重氮乙烷反向缔合的壁垒仅为3.3 kcal / mol;对于甲基二氮杂戊烯,该势垒为11.7 kcal / mol。没有迹象表明与第一激发态(通常> 60 kcal mol(-1))会发生表面交叉。这些结果与实验结果非常吻合,并且很好地解释了分离甲基卡宾所涉及的困难,而甲基卡宾位于连接前体和产物的潜力的一小部分。考虑到进一步的实验工作,应使用重氮乙烷作为前体更容易地捕获甲基卡宾。 [参考:23]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号