首页> 外文期刊>Journal of the American Chemical Society >Reactivity of Chemisorbed Oxygen Atoms and Their Catalytic Consequences during CH-4-O-2 Catalysis on Supported Pt Clusters
【24h】

Reactivity of Chemisorbed Oxygen Atoms and Their Catalytic Consequences during CH-4-O-2 Catalysis on Supported Pt Clusters

机译:CH-4-O-2催化负载Pt团簇过程中化学吸附氧原子的反应性及其催化作用

获取原文
获取原文并翻译 | 示例
       

摘要

Kinetic and isotopic data and density functional theory treatments provide evidence for the elementary steps and the active site requirements involved in the four distinct kinetic regimes observed during CH-4 oxidation reactions using O-2, H-2O, or CO-2 as oxidants on Pt clusters. These four regimes exhibit distinct rate equations because of the involvement of different kinetically relevant steps, predominant adsorbed species, and rate and equilibrium constants for different elementary steps. Transitions among regimes occur as chemisorbed oxygen (O~*) coverages change on Pt clusters. O~* coverages are given, in turn, by a virtual O-2 pressure, which represents the pressure that would give the prevalent steady-state O~* coverages if their adsorption—desorption equilibrium was maintained. The virtual O-2 pressure acts as a surrogate for oxygen chemical potentials at catalytic surfaces and reflects the kinetic coupling between C—H and O=O activation steps. O~* coverages and virtual pressures depend on O-2 pressure when O-2 activation is equilibrated and on O-2/CH-4 ratios when this step becomes irreversible as a result of fast scavenging of O~* by CH-4-derived intermediates. In three of these kinetic regimes, C—H bond activation is the sole kinetically relevant step, but occurs on different active sites, which evolve from oxygen—oxygen (O~*—O~*), to oxygen—oxygen vacancy (O~*—*), and to vacancy—vacancy (*—*) site pairs as O~* coverages decrease. On O~*-saturated cluster surfaces, O~*—O~* site pairs activate C—H bonds in CH-4 via homolytic hydrogen abstraction steps that form CH-3 groups with significant radical character and weak interactions with the surface at the transition state. In this regime, rates depend linearly on CH-4 pressure but are independent of O-2 pressure. The observed normal CH-4/CD-4 kinetic isotope effects are consistent with the kinetic-relevance of C—H bond activation; identical 16O-2— l8O-2 isotopic exchange rates in the presence or absence of CH4 show that O-2 activation steps are quasi-equilibrated during catalysis. Measured and DFT-derived C—H bond activation barriers are large, because of the weak stabilization of the CH-3 fragments at transition states, but are compensated by the high entropy of these radical-like species. Turnover rates in this regime decrease with increasing Pt dispersion, because low-coordination exposed Pt atoms on small dusters bind O~* more strongly than those that reside at low-index facets on large clusters, thus making O~* less effective in H-abstraction. As vacancies (*, also exposed Pt atoms) become available on O~*-covered surfaces, O*—* site pairs activate C—H bonds via concerted oxidative addition and H-abstraction in transition states effectively stabilized by CH-3 interactions with the vacancies, which lead to much higher turnover rates than on O~*—O~* pairs. In this regime, O-2 activation becomes irreversible, because fast C—H bond activation steps scavenge O~* as it forms. Thus, O~* coverages are set by the prevalent O-2/CH-4 ratios instead of the O-2 pressures. CH-4/CD-4 kinetic isotope effects are much larger for turnovers mediated by O~*—* than by O~*—O~* site pairs, because C—H (and C—D) activation steps are required to form the * sites involved in C—H bond activation. Turnover rates for CH-4—O-2 reactions mediated by O~*—* pairs decrease with increasing Pt dispersion, as in the case of O~*—O~* active structures, because stronger O~* binding on small clusters leads not only to less reactive O~* atoms, but also to lower vacancy concentrations at cluster surfaces. As O-2/CH-4 ratios and O~* coverages become smaller, O-2 activation on bare Pt clusters becomes the sole kinetically relevant step; turnover rates are proportional to O-2 pressures and independent of CH4 pressure and no CH-4/CD-4 kinetic isotope effects are observed. In this regime, turnover rates become nearly independent of Pt dispersion, because the O-2 activation step is essentially barrierless. In the absence of O-2, alternate weaker oxidants, such as H-2O or CO-2, lead to a final kinetic regime in which C—H bond dissociation on *—* pairs at bare cluster surfaces limit CH-4 conversion rates. Rates become first-order in CH-4 and independent of coreactant and normal CH-4/CD-4 kinetic isotope effects are observed. In this case, turnover rates increase with increasing dispersion, because low-coordination Pt atoms stabilize the C—H bond activation transition states more effectively via stronger binding to CH-3 and H fragments. These findings and their mechanistic interpretations are consistent with all rate and isotopic data and with theoretical estimates of activation barriers and of cluster size effects on transition states. They serve to demonstrate the essential role of the coverage and reactivity of chemisorbed oxygen in determining the type and effectiveness of surface structures in CH-4 oxidation reactions using O-2, H-2O, or CO-2 as oxidants, as well as the diversity of rate dependencies, activation energies and entropies, and duster size effects that prevail in these reactions. These results also show how theory and experiments can unravd complex surface chemistries on realistic catalysts under practical conditions and provide through the resulting mechanistic insights specific predictions for the effects of duster size and surface coordination on turnover rates, the trends and magnitude of which depend sensitively on the nature of the predominant adsorbed intermediates and the kinetically relevant steps.
机译:动力学和同位素数据以及密度泛函理论处理为使用O-2,H-2O或CO-2作为氧化剂在CH-4氧化反应期间观察到的四个不同动力学方案中涉及的基本步骤和活性位点要求提供了证据铂簇。由于涉及不同的动力学相关步骤,主要的吸附物质以及不同基本步骤的速率和平衡常数,这四个方案显示出不同的速率方程。当Pt簇上的化学吸附氧(O〜*)覆盖率发生变化时,方案之间会发生转变。 O〜*覆盖率依次由虚拟O-2压力给出,该压力表示如果保持其吸附-解吸平衡,则将给出普遍的稳态O〜*覆盖率的压力。虚拟O-2压力充当催化表面氧化学势的替代物,并反映CH和O = O活化步骤之间的动力学耦合。 O〜*的覆盖范围和虚拟压力取决于平衡O-2活化时的O-2压力,以及由于CH-4-快速清除O〜*​​而导致此步骤不可逆时的O-2 / CH-4比率。衍生中间体。在这三种动力学方案中,CH键的活化是唯一的动力学相关步骤,但发生在不同的活性位点上,这些活性位点从氧-氧(O〜* -O〜*)演变为氧-氧空位(O〜 *-*),并且随着O〜*覆盖率的降低,空缺(*-*)站点对。在O〜*饱和的簇表面上,O〜* -O〜*位点对通过CH 3中的均溶氢活化步骤激活CH键,CH 3键形成CH-3基团,该CH-3基团具有显着的自由基特征,且与表面处的相互作用较弱。过渡状态。在这种情况下,速率线性取决于CH-4压力,但与O-2压力无关。观察到的正常CH-4 / CD-4动力学同位素效应与CH键活化的动力学相关性相符。在存在或不存在CH4的情况下,相同的16O-2–18O-2同位素交换速率表明O-2活化步骤在催化过程中是准平衡的。由于CH-3片段在过渡态的稳定性较弱,因此测量得到的DFT衍生的CH键活化势垒很大,但这些自由基状物质的高熵补偿了该障碍。这种状态下的周转率随着Pt分散度的增加而降低,这是因为小粉尘上低配位暴露的Pt原子比大簇上低折射率小平面上的O〜*结合更牢固,因此使O〜*在H-抽象。当空位(*,也有暴露的Pt原子)在被O〜*覆盖的表面上可用时,O *-*位点对通过协同的氧化加成和H-抽象在CH-3相互作用与CH-3相互作用稳定的过渡态中激活C-H键。这些空缺导致的周转率比O〜* -O〜*对高。在这种情况下,O-2的激活变得不可逆,因为快速的CH键激活步骤会清除O〜*​​的形成。因此,O〜*的覆盖率由普遍的O-2 / CH-4比值而不是O-2压力来设定。 CH-4 / CD-4的动力学同位素效应对于O〜*-*介导的转换要比O〜* -O〜*位点对大得多,因为需要形成CH(和C-D)活化步骤*涉及CH键活化的位点。与O〜* -O〜*活性结构的情况一样,由O〜*-*对介导的CH-4-O-2反应的周转率随Pt分散度的增加而降低,因为在小簇上较强的O〜*结合导致不仅降低了O〜*原子的反应性,而且降低了簇表面的空位浓度。随着O-2 / CH-4比率和O〜*覆盖率变小,裸露的Pt团簇上的O-2活化成为唯一的动力学相关步骤。周转率与O-2压力成正比,与CH4压力无关,并且未观察到CH-4 / CD-4动力学同位素效应。在这种情况下,周转率几乎不依赖于Pt分散,因为O-2活化步骤基本上是无障碍的。在没有O-2的情况下,交替使用较弱的氧化剂(例如H-2O或CO-2)会导致最终的动力学机制,其中裸簇表面上*-*对上的CH键解离会限制CH-4转化率。速率在CH-4中变为一级,并且与共反应剂无关,并且观察到正常的CH-4 / CD-4动力学同位素效应。在这种情况下,周转率随分散度的增加而增加,因为低配位的Pt原子通过与CH-3和H片段的更强结合更有效地稳定了CH键的活化过渡态。这些发现及其机理解释与所有速率和同位素数据以及激活壁垒和簇尺寸对过渡态的影响的理论估计均相符。它们用于证明化学吸附的氧的覆盖率和反应性在确定使用O-2,H-2O或CO-2作为氧化剂的CH-4氧化反应中表面结构的类型和有效性中的重要作用。,以及这些反应中普遍存在的速率依赖性,活化能和熵以及喷粉尺寸效应的多样性。这些结果还表明,理论和实验如何在实际条件下破坏现实催化剂上的复杂表面化学,并通过所得的机械见解提供对除尘器尺寸和表面协调性对周转率的影响的特定预测,其趋势和幅度敏感地取决于主要吸附中间体的性质和动力学相关步骤。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第40期|p.15958-15978|共21页
  • 作者单位

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States;

    Departments of Chemical Engineering and Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States;

    Departments of Chemical Engineering and Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States;

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号