首页> 外文期刊>Journal of the American Chemical Society >Electrochemical Mechanism of lon-lonophore Recognition at Plasticized Polymer Membrane/Water Interfaces
【24h】

Electrochemical Mechanism of lon-lonophore Recognition at Plasticized Polymer Membrane/Water Interfaces

机译:增塑聚合物膜/水界面上lon-lonophore识别的电化学机理

获取原文
获取原文并翻译 | 示例
       

摘要

Here, we report on the first electrochemical study that reveals the kinetics and molecular level mechanism of heterogeneous ion—ionophore recognition at plasticized polymer membrane/water interfaces. The new kinetic data provide greater understanding of this important ion-transfer (IT) process, which determines various dynamic characteristics of the current technologies that enable highly selective ion sensing and separation. The theoretical assessment of the reliable voltammetric data confirms that the dynamics of the iono-phore-facilitated IT follows the one-step electrochemical (E) mechanism controlled by ion—ionophore complexation at the very interface in contrast to the thermodynamically equivalent two-step electrochemical—chemical (EC) mechanism based on the simple transfer of an aqueous ion followed by its complexation in the bulk membrane. Specifically, cyclic voltammograms of Ag~+, K~+, Ca~2+, Ba~2+, and Pb~2+ transfers facilitated by highly selective ionophores are measured and analyzed numerically using the E mechanism to obtain standard IT rate constants in the range of 10~-2 to 10~-3 cm/s at both plasticized poly(vinyl chloride) membrane/water and 1,2-dichloroethane/water interfaces. We demonstrate that these strongly facilitated IT processes are too fast to be ascribed to the EC mechanism. Moreover, the little effect of the viscosity of nonaqueous media on the IT kinetics excludes the EC mechanism, where the kinetics of simple IT is viscosity-dependent. Finally, we employ molecular level models for the E mechanism to propose three-dimensional ion—ionophore complexation at the two-dimensional interface as the unique kinetic requirement for the thermodynamically facilitated IT.
机译:在这里,我们报道了第一项电化学研究,该研究揭示了增塑的聚合物膜/水界面上异质离子-离子载体识别的动力学和分子水平机制。新的动力学数据使人们对这一重要的离子转移(IT)过程有了更深入的了解,它决定了当前技术的各种动态特性,这些技术可以实现高度选择性的离子感测和分离。对可靠伏安数据的理论评估证实,与热力学等价的两步电化学法相反,电离离子团促进的IT动力学遵循在界面处由离子-离子载体络合控制的一步电化学(E)机理。 -化学(EC)机理,基于简单转移水性离子,然后在整体膜中进行络合。具体来说,使用E机制测量和分析由高选择性离子载体促进的Ag〜+,K〜+,Ca〜2 +,Ba〜2 +和Pb〜2 +的循环伏安图,并在数值上进行分析,以获得标准的IT速率常数。在增塑的聚氯乙烯膜/水和1,2-二氯乙烷/水的界面处,其范围为10〜-2至10〜-3 cm / s。我们证明,这些大力推动的IT流程太快了,无法归因于EC机制。此外,非水介质的粘度对IT动力学的影响很小,排除了EC机制,其中简单IT的动力学取决于粘度。最后,我们将分子水平模型用于E机制,以在二维界面上提出三维离子-离子载体络合物,作为热力学促进IT的独特动力学要求。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第40期|p.16300-16308|共9页
  • 作者单位

    Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260;

    Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260;

    Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260;

    Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260;

    Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260;

    Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号