首页> 外文期刊>Journal of the American Chemical Society >Supported-Nanoparticle Heterogeneous Catalyst Formation in Contact with Solution: Kinetics and Proposed Mechanism for the Conversion of lr(1,5-COD)CI/γ-AI_2O_3 to lr(0)_(~900)/γ-AI_20_3
【24h】

Supported-Nanoparticle Heterogeneous Catalyst Formation in Contact with Solution: Kinetics and Proposed Mechanism for the Conversion of lr(1,5-COD)CI/γ-AI_2O_3 to lr(0)_(~900)/γ-AI_20_3

机译:与溶液接触的负载型纳米颗粒多相催化剂的形成:lr(1,5-COD)CI /γ-AI_2O_3转化为lr(0)_(〜900)/γ-AI_20_3的动力学和机理

获取原文
获取原文并翻译 | 示例
       

摘要

A current goal in heterogeneous catalysis is to transfer the synthetic, as well as developing mechanistic, insights from the modern revolution in nanoparticle science to the synthesis of supported-nanopartide heterogeneous catalysts. In a recent study (Mondloch, J. E.; Wang, Q.; Frenkel, A. I.; Finke, R. G.J. Am. Chem. Soc. 2010,132, 9701-9714), we initialized tests of the global hypothesis that quantitative kinetic and mechanistic studies, of supported-nanopartide heterogeneous catalyst formation in contact with solution, can provide synthetic and mechanistic insights that can eventually drive improved syntheses of composition-, size-, and possibly shape-controlled catalysts. That study relied on the development of a well-characterized Ir(l,5-COD)Cl/γ-Al_2O_3 precatalyst, which, when in contact with solution and H_2 turns into a nonaggregated Ir(0)_(~900)/γ-Al_2O_3 supported-nanopartide heterogeneous catalyst. The kinetics of the Ir(l,5-COD)Cl/γ-Al_2O_3 to Ir(0)_(~900)/γ-Al_2O_3 conversion were followed and fit by a two-step mechanism consisting of nucleation (A-* B, rate constant k_1) followed by autocatalytic surface growth (A + B -* 2B, rate constant k_2). However, a crucial, but previously unanswered question is whether the nucleation and growth steps occur primarily in solution, on the support, or possibly in both phases for one or more of the catalyst-formation steps. The present work investigates this central question for the prototype Ir(l,5-COD)Cl/y-Al_2O_3 to Ir(0)_(~900)/γ-Al_2O_3 system. Solvent variation-, y-Al_2O_3-, and acetone-dependent kinetic data, along with UV-vis spectroscopic and gas-liquid-chromatography (GLC) data, are consistent with and strongly supportive of a supported-nanopartide formation mechanism consisting of Ir(l,5-COD)Cl(solvent) dissociation from the γ-Al_2O_3 support (i.e., from Ir(l,5-COD)Cl/γ-Al_2O_3), solution-based nudeation from that dissociated Ir(l,5-COD)Cl(solvent) species, fast Ir(0)_n nanopartide capture by y-Al_2O_3, and then subsequent solid-oxide-based nanopartide growth from Ir(0)_n/γ-Al_2O_3 and with Ir(l,5-COD)Cl(solvent), the first kinetically documented mechanism of this type. Those data disprove a solid-oxide-based nudeation and growth pathway involving only Ir(l,5-COD)Cl/y-Al_2O_3 and also disprove a solution-based nanoparticle growth pathway involving Ir(l,5-COD)Cl(soIvent) and Ir(0)_n in solution. The present mechanistic studies allow comparisons of the Ir(l,5-COD)Cl/y-Al_2O_3 to Ir(0)~9oo/y-Al_2O_3 supported-nanopartide formation system to the kinetically and mechanistically well-studied, Ir(l,5-COD) • P_2WisNb_3O_(62)~(8-) to Ir(0)_(~300)· (P_2W_(15)Nb_3O_(60)~(8-))_n~(-8n) solution-based, polyoxoanion-stabilized nanopartide formation and stabilization system. That comparison reveals dosely analogous, solution Ir(l,5-COD)~+ or Ir(l,5-COD)Cl-mediated, medianisms of nanopartide formation. Overall, the hypothesis supported by this work is that these and analogous studies hold promise of providing a way to transfer the synthetic and mechanistic insights, from the modern revolution in nanopartide synthesis and characterization in solution, to the rational, mechanism-directed syntheses of solid oxide-supported nanopartide heterogeneous catalysts, also in contact with solution.
机译:非均相催化的当前目标是将合成的以及发展的机械见解从纳米粒子科学的现代革命转移到负载型纳米粒子非均相催化剂的合成中。在最近的一项研究中(美国蒙德洛赫(Mondloch,JE);王强(Q.);艾伦·弗伦克(Frenkel);芬克(RGJ),美国化学学会(Am。Chem。Soc。),2010,132,9701-9714),我们初始化了全球假设的检验,即定量动力学和机理研究,与溶液接触的负载型纳米粒子非均相催化剂的形成,可以提供合成和机理方面的见解,最终可以推动对组成,尺寸和形状控制催化剂的改进合成。该研究依赖于表征良好的Ir(1,5-COD)Cl /γ-Al_2O_3预催化剂的开发,当与溶液和H_2接触时,该预催化剂会变成未聚集的Ir(0)_(〜900)/γ -Al_2O_3负载的纳米粒子多相催化剂。遵循Ir(1,5-COD)Cl /γ-Al_2O_3到Ir(0)_(〜900)/γ-Al_2O_3转化的动力学并通过由成核作用组成的两步​​机理(A- * B ,速率常数k_1),然后进行自催化表面生长(A + B-* 2B,速率常数k_2)。然而,一个关键的但以前未解决的问题是成核和生长步骤是主要在溶液中,在载体上还是在一个或多个催化剂形成步骤的两个阶段中发生。当前的工作调查了原型Ir(1,5-COD)Cl / y-Al_2O_3到Ir(0)_(〜900)/γ-Al_2O_3系统的中心问题。溶剂变化,y-Al_2O_3-和丙酮相关的动力学数据以及紫外可见光谱和气液色谱(GLC)数据与由Ir(从γ-Al_2O_3载体(即从Ir(1,5-COD)Cl /γ-Al_2O_3)解离的l,5-COD)Cl(溶剂),从解离的Ir(l,5-COD Cl(溶剂)物种,通过y-Al_2O_3快速捕获Ir(0)_n纳米粒子,然后从Ir(0)_n /γ-Al_2O_3并使用Ir(l,5-COD)随后基于固体氧化物的纳米粒子生长Cl(溶剂),第一个动力学记录的此类机理。这些数据证明了仅涉及Ir(l,5-COD)Cl / y-Al_2O_3的基于固体氧化物的裸露和生长途径,也反对了涉及Ir(l,5-COD)Cl(soIvent)的基于溶液的纳米颗粒生长途径)和Ir(0)_n在解决方案中。目前的机理研究允许将Ir(1,5-COD)Cl / y-Al_2O_3与Ir(0)〜9oo / y-Al_2O_3负载的纳米粒子形成系统与动力学和机理上经过充分研究的Ir(l, 5-COD)•基于解决方案的P_2WisNb_3O_(62)〜(8-)至Ir(0)_(〜300)·(P_2W_(15)Nb_3O_(60)〜(8-))_ n〜(-8n),聚氧阴离子稳定的纳米粒子的形成和稳定体系。该比较揭示了剂量相似的溶液Ir(1,5-COD)〜+或Ir(1,5-COD)Cl介导的纳米粒子形成的中性现象。总体而言,这项工作支持的假设是,这些研究和类似研究有望提供一种方法,以将合成的和机械的见解从纳米粒子合成和溶液表征的现代革命转移到固体的合理的,机制导向的合成。氧化物负载的纳米级非均相催化剂,也与溶液接触。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第20期|p.7744-7756|共13页
  • 作者单位

    Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States;

    Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:16

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号