首页> 外文期刊>Journal of the American Chemical Society >Dye-Sensitized Photocathodes: Efficient Light-Stimulated Hole Injection into p-GaP Under Depletion Conditions
【24h】

Dye-Sensitized Photocathodes: Efficient Light-Stimulated Hole Injection into p-GaP Under Depletion Conditions

机译:染料敏化的光电阴极:在耗尽条件下将有效的光刺激空穴注入p-GaP

获取原文
获取原文并翻译 | 示例
       

摘要

The steady-state photoelectrochemical re-sponses of p-GaP photoelectrodes immersed in aqueous electrolytes and sensitized separately by six triphenylmethane dyes (rose bengal, rhodamine B, crystal violet, ethyl violet, fast green fcf, and brilliant green) have been analyzed. Impedance measurements indicated that these p-GaP(l00) photoelectr-odes operated under depletion conditions with an electric field of ~8.5 × 10~5 V cm~(-1) at the p-GaP/solution interface. The set of collected wavelength-dependent quantum yield responses were consistent with sensitization occurring specifically from adsorbed triphenylmethane dyes. At high concentrations of dissolved dye, the measured steady-state photocurrent-potential responses collected at sub-bandgap wavelengths suggested unexpectedly high (>0.l) net internal quantum yields for sensitized hole injection. Separate measurements performed with rose bengal adsorbed on p-GaP surfaces pretreated with (NH_4)_2S verified efficient sensitized hole injection. A modified version of wxAMPS, a finite-difference software package, was utilized to assess key operational features of the sensitized p-GaP photocathodes. The net analysis showed that the high internal quantum yield values inferred from the experimental data were most likely afforded by the internal electric field present within p-GaP, effectively sweeping injected holes away from the interface and minimizing their participation in deleterious pathways that could limit the net collection yield. These simulations defined effective threshold values for the charge carrier mobilities (≥10~(-6) cm~2 V~(-1) s~(-1) and ≥10~(-1) cm2 V~(-1) s~(-1) at dopant densities of 10~(18) and 10~(13) cm~(-3), respectively), hole injection rate constants (≥10~(12) s~(-1)), and surface trap densities (10~(12) cm~(-2)) needed to attain efficient hole collection with the quality of p-GaP materials used here. The cumulative experimental and modeling data thus provide insight on design strategies for assembling new types of dye-sensitized photocathodes that operate under depletion conditions.
机译:分析了p-GaP光电极的稳态光电化学反应,该光电极浸入水性电解质中并分别被六种三苯甲烷染料(玫瑰红,若丹明B,结晶紫,乙基紫,坚牢绿色fcf和亮绿色)敏化。阻抗测量表明,这些p-GaP(100)光电电极在耗尽条件下在p-GaP /溶液界面的电场为〜8.5×10〜5 V cm〜(-1)的情况下工作。所收集的与波长有关的量子产率响应的集合与具体地从吸附的三苯甲烷染料发生的敏化相一致。在高浓度的溶解染料下,在亚带隙波长处收集的测得的稳态光电流势响应表明,敏化空穴注入的净内部量子产率出乎意料的高(> 0.1)。分别对用(NH_4)_2S预处理的p-GaP表面吸附的玫瑰孟加拉进行了单独的测量,证实了有效的敏化空穴注入。 wxAMPS的修改版(有限差分软件包)用于评估敏化的p-GaP光电阴极的关键操作特征。净分析表明,从实验数据推断出的高内部量子产率值很可能是由p-GaP内部存在的内部电场提供的,可以有效地将注入的空穴清除出界面,并最大程度地减少其对有害途径的参与,从而限制了净回收量。这些模拟为载流子迁移率(≥10〜(-6)cm〜2 V〜(-1)s〜(-1)和≥10〜(-1)cm2 V〜(-1)s定义了有效阈值〜(-1)的掺杂浓度分别为10〜(18)和10〜(13)cm〜(-3)),空穴注入速率常数(≥10〜(12)s〜(-1))和为了获得有效的空穴收集所需的表面陷阱密度(10〜(12)cm〜(-2)),此处使用的是p-GaP材料。因此,累积的实验和建模数据为组装在耗尽条件下工作的新型染料敏化光电阴极的设计策略提供了见识。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第25期|p.10670-10681|共12页
  • 作者单位

    Applied Physics Program, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States;

    Chemistry Department, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States;

    Institute of Photoelectronic Thin Film Device and Technology, Nankai University, Weijin Road 94, Tianjin 300071, PR China;

    Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, United States';

    Applied Physics Program, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States,Chemistry Department, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号