首页> 外文期刊>Journal of the American Chemical Society >Non-covalent Monolayer-Piercing Anchoring of Lipophilic Nucleic Acids: Preparation, Characterization, and Sensing Applications
【24h】

Non-covalent Monolayer-Piercing Anchoring of Lipophilic Nucleic Acids: Preparation, Characterization, and Sensing Applications

机译:亲脂性核酸的非共价单层穿刺锚固:制备,表征和传感应用。

获取原文
获取原文并翻译 | 示例
       

摘要

Functional interfaces of biomolecules and inorganic substrates like semiconductor materials are of utmost importance for the development of highly sensitive biosensors and microarray technology. However, there is still a lot of room for improving the techniques for immobilization of biomolecules, in particular nucleic acids and proteins. Conventional anchoring strategies rely on attaching biomacromolecules via complementary functional groups, appropriate bifunctional linker molecules, or non-covalent immobilization via electrostatic interactions. In this work, we demonstrate a facile, new, and general method for the reversible non-covalent attachment of amphiphilic DNA probes containing hydrophobic units attached to the nucleobases (lipid-DNA) onto SAM-modified gold electrodes, silicon semiconductor surfaces, and glass substrates. We show the anchoring of well-defined amounts of lipid-DNA onto the surface by insertion of their lipid tails into the hydrophobic monolayer structure. The surface coverage of DNA molecules can be conveniently controlled by modulating the initial concentration and incubation time. Further control over the DNA layer is afforded by the additional external stimulus of temperature. Heating the DNA-modified surfaces at temperatures >80 ℃ leads to the release of the lipid-DNA structures from the surface without harming the integrity of the hydrophobic SAMs. These supramolecular DNA layers can be further tuned by anchoring onto a mixed SAM containing hydrophobic molecules of different lengths, rather than a homogeneous SAM. Immobilization of lipid-DNA on such SAMs has revealed that the surface density of DNA probes is highly dependent on the composition of the surface layer and the structure of the lipid-DNA The formation of the lipid-DNA sensing layers was monitored and characterized by numerous techniques including X-ray photoelectron spectroscopy, quartz crystal microbalance, ellipsometry, contact angle measurements, atomic force microscopy, and confocal fluorescence imaging. Finally, this new DNA modification strategy was applied for the sensing of target DNAs using silicon-nanowire field-effect transistor device arrays, showing a high degree of specificity toward the complementary DNA target, as well as single-base mismatch selectivity.
机译:生物分子和无机底物(如半导体材料)的功能界面对于开发高度灵敏的生物传感器和微阵列技术至关重要。但是,仍然存在很大的空间来改进固定生物分子,特别是核酸和蛋白质的技术。常规的锚定策略依赖于通过互补的官能团,合适的双功能接头分子或通过静电相互作用进行的非共价固定来连接生物大分子。在这项工作中,我们展示了一种简便,新颖且通用的方法,可将两性DNA探针可逆地非共价连接,该探针含有疏水单元,该疏水单元附着于核碱基(脂​​质DNA)上,修饰到SAM修饰的金电极,硅半导体表面和玻璃上基材。我们通过将它们的脂质尾部插入疏水性单层结构中,显示了明确定义的数量的脂质DNA锚定在表面上。通过调节初始浓度和孵育时间可以方便地控制DNA分子的表面覆盖。通过额外的外部温度刺激,可以进一步控制DNA层。在> 80℃的温度下加热DNA修饰的表面会导致脂质DNA结构从表面上释放出来,而不会损害疏水性SAM的完整性。这些超分子DNA层可以通过锚定在包含不同长度疏水分子而不是均质SAM的混合SAM上来进一步调整。将脂质-DNA固定在此类SAM上显示,DNA探针的表面密度高度依赖于表面层的组成和脂质-DNA的结构。脂质-DNA传感层的形成受到监控并具有众多特征技术包括X射线光电子能谱,石英晶体微量天平,椭圆偏振法,接触角测量,原子力显微镜和共聚焦荧光成像。最后,这种新的DNA修饰策略通过硅纳米线场效应晶体管器件阵列应用于靶DNA的检测,显示出对互补DNA靶的高度特异性以及单碱基错配选择性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第1期|p.280-292|共13页
  • 作者单位

    School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel,Zernike Institute for Advanced Materials, Department of Polymer Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

    School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel,Zernike Institute for Advanced Materials, Department of Polymer Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

    Zernike Institute for Advanced Materials, Department of Polymer Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

    Zernike Institute for Advanced Materials, Department of Polymer Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

    School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv 69978, Israel;

    School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv 69978, Israel;

    Wolfson Applied Materials Research Center and Tel Aviv 69978, Israel;

    rnThe Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel;

    School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv 69978, Israel;

    School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv 69978, Israel;

    Zernike Institute for Advanced Materials, Department of Polymer Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;

    School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv 69978, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号