首页> 外文期刊>Journal of the American Chemical Society >Energy-Level Matching of Fe(Ⅲ) Ions Grafted at Surface and Doped in Bulk for Efficient Visible-Light Photocatalysts
【24h】

Energy-Level Matching of Fe(Ⅲ) Ions Grafted at Surface and Doped in Bulk for Efficient Visible-Light Photocatalysts

机译:高效可见光光催化剂表面嫁接并批量掺杂Fe(Ⅲ)离子的能级匹配

获取原文
获取原文并翻译 | 示例
       

摘要

Photocatalytic reaction rate (R) is determined by the multiplication of light absorption capability (α) and quantum efficiency (QE); however, these two parameters generally have trade-off relations. Thus, increasing α without decreasing QE remains a challenging issue for developing efficient photocatalysts with high R. Herein, using Fe(Ⅲ) ions grafted Fe(Ⅲ) doped TiO_2 as a model system, we present a novel method for developing visible-light photocatalysts with efficient R, utilizing the concept of energy level matching between surface-grafted Fe(Ⅲ) ions as co-catalysts and bulk-doped Fe(Ⅲ) ions as visible-light absorbers. Photogenerated electrons in the doped Fe(Ⅲ) states under visible-light efficiently transfer to the surface grafted Fe(Ⅲ) ions co-catalysts, as the doped Fe(Ⅲ) ions in bulk produced energy levels below the conduction band of TiO_2, which match well with the potential of Fe~(3+)/Fe~(2+) redox couple in the surface grafted Fe(Ⅲ) ions. Electrons in the surface grafted Fe(Ⅲ) ions efficiently cause multielectron reduction of adsorbed oxygen molecules to achieve high QE value. Consequently, the present Fe(Ⅲ)-Fe_xTi_(1-x)O_2 nanocomposites exhibited the highest visible-light R among the previously reported photocatalysts for decomposition of gaseous organic compounds. The high R can proceed even under commercial white-light emission diode irradiation and is very stable for long-term use, making it practically useful. Further, this efficient method could be applied in other wide-band gap semiconductors, including ZnO or SrTiO_3, and may be potentially applicable for other photocatalysis systems, such as water splitting, CO_2 reduction, NO_x removal, and dye decomposition. Thus, this method represents a strategic approach to develop new visible-light active photocatalysts for practical uses.
机译:光催化反应速率(R)由光吸收能力(α)和量子效率(QE)的乘积确定;但是,这两个参数通常具有折衷关系。因此,在不降低QE的情况下增加α仍然是开发具有高R的高效光催化剂的一个挑战性问题。在此,以Fe(Ⅲ)离子接枝的Fe(Ⅲ)掺杂的TiO_2为模型体系,我们提出了一种开发可见光光催化剂的新方法。在高效R下,利用表面接枝的Fe(Ⅲ)离子作为助催化剂和体掺杂的Fe(Ⅲ)离子作为可见光吸收剂之间的能级匹配概念。在可见光下,掺杂的Fe(Ⅲ)态中的光生电子有效转移到表面接枝的Fe(Ⅲ)离子助催化剂上,因为大量掺杂的Fe(Ⅲ)离子产生的能级低于TiO_2的导带,因此与表面嫁接的Fe(Ⅲ)离子中Fe〜(3 +)/ Fe〜(2+)氧化还原对的电势匹配良好。表面接枝的Fe(Ⅲ)离子中的电子有效地导致吸附的氧分子发生多电子还原,从而获得较高的QE值。因此,在先前报道的用于气态有机化合物分解的光催化剂中,目前的Fe(Ⅲ)-Fe_xTi_(1-x)O_2纳米复合材料表现出最高的可见光R。高R即使在商业白光发射二极管的照射下也可以进行,并且对于长期使用非常稳定,使其实际上有用。此外,该有效方法可以应用于包括ZnO或SrTiO_3的其他宽带隙半导体中,并且可能潜在地适用于其他光催化系统,例如水分解,CO_2还原,NO_x去除和染料分解。因此,该方法代表了开发用于实际用途的新型可见光活性光催化剂的战略方法。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第27期|10064-10072|共9页
  • 作者单位

    Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan;

    Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan;

    Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan;

    Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:12:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号